
Canada $4.25

USA $3.50

C128 scrolling directory utility

Multitasking on the CI 28

Exploring CP/M's SUBMIT program

The ultimate machine language input routine

Fast ML sprite rotation

An / Ching Hexagram generator

C64 hexadecimal file editor

Notes on C programming and RAM expansion units

Programming in GEOS

Plus Reviews of the Lt, Kernal hard drive and Cinemaware's Warp Speed

cartridge; tips and programs in bits\ new product announcements and more.

en:

o
a.

Trilemma by Jo-Anne Park

MUSIC
CBfER

539 N. Wolf Rd. — Wheeling, IL 60090

Hours— ivGice) Phone (312) 520-2540

Mon.-Thurs. 12:30-5:00, Sat. 12:00-4:00
(24 Hour Order Recorder)

.1We want to be^ Commodore sh

Hacker^ Qopnep If^H i^^^
One of a Kind • Surplus • Monthly Special • Ctoseouts ^K^^J V^^^B ^ f f^^ ^ww

Limited qganthtiefl \o sIdcI: ChI haild

64 h leee lo parallel bufl^r ..,...,_ $t9y DU

4D?3p lOOcpsrahab ^ . « ^ . « . « ^ . ^ » . ^ 399m
64k ram exp SO:^ « , . ftlOOO

Smirh Cflrona DM-200 1179.95

6400-8300p. Di5bEo63Dribbdns t4 95

SQ?^pandMPP i361 nbbong ^ , ^ ^ , SS50

9090 j" 5 mag rahab ..____ (495 00

40S3p "bDons * - S6 00

Everex2400ex1eFndl moO^m , * , * , S245 00

NWM's
INVENTORY CONTROL

SYSTEM-

RWVSt

WH8» ^H

Requires use cP &uperba$Q

luad£ prograrTh modules in less Ihan S seconds
(sup^rha$« 2] lo mam menus in 3 seconds or Fess

on screen pop-up ulculAtar in tranEaclion

moOLiles

mo si data ceniefed tuner ion use the calculalor

keypad
versaule report features aMow for 3 ways lo print

[he same report User selects Ihe laslESl method
builf m sophisncaled export program aflows fof

l:i]mplftre packing of the database
lype ahead feature aMowed
you can display repDMs on screen

access lo superbase menu for user developed
applications

B Vftrsian 1 8050 $39.95

8 Version 2 8050 $39.95
C-12H Vefftlon 1 1571 , . . . $24.95

B-12B Version 1*2 flOSO $44.95

B-128
$145 U.S.

NEW 12BK USER MSTALLABLE
MEMORY EXPANSION!
INTRODUCTORY PRICE OF ONLY %^2b.

SOFTWARE FOR THE B-128!!!

GABS Accounting

Superba^e Sia,95

Superscript S19.95

Superoffice Integra led

Sjperpase & Superscnpi S49,95

CbIc Result 589.95

Word Result $B9.B5

Super Dish Doc 24.96

The Power ot Calc Resull [Booh) %^A 95

Generaf Ledger ._..,. S 9.95

Accounis Receivable $ 9.95

Accounis Pa/able - , $ 9.95

Order Entry $ 9 95

Pay'roll $ 9 95

Buy all 5 for only 124.95

Superbase The Book . SU.95

Applied Calc Result [BooKl 514 95

only $19900

white supplies last

With Five
Interpretive

Languages;
Cobol
Psicaf
BflAlc

Fortran
Apl

Runs 8032 soHware.

Great for schools and students

64K Memory Expansion for 8032 only $110
upgrades your 8032 to an 8096.

COMMODORE
8000-900Q SOFTWARE & MISC.

9000 Superpel Sl99 00

64Kexp"orea32 1110

OZZ Database 125

BPI General Ledger -....-.,.---. $35
BPl Accts Payable $?5

BPI Job Cost 125

BPI Accts Recei^fflble S35

BPI Jriventory £25

Superscipl 6032 £79

Superbase 8096 ...,..-., S79

Legal Time Ace ...,.,,., S25
OOA Jones Prograrn J25
info Designs B032
Accounting System $50
Superoflice B096 S149
Caic Result 6032 SS9

5FD1001 1 Megabyte
PRICED AT $149.95 (US)
$125willi purchase ot Superpel

SFO-iOOi IS ihfldnueihflt you should cun5iilei«nen you need large amoirrttsol data slorage If holds

Dver I rriegaftyieordaiaon iis single floppy On ve Fasl IEEE access lor yDijrC-64 or C-I2a (C-64and

C-138 need an LEEE miarface) Why settle <oi ^lo^erdn^flfiwiih less siorage capacity Thfsdnve stores

suDslanliaily more programs and data Thinii no« much money V°u ^^f* save on disk purcnases in

factn it stores almosi 7 iimea more mlormalion than your standard dnwa Bulletin board owners (ova

Ihem And what an inirodiiciorypnceiAl Si 69 95 these drives «ill sell tasT so don I wait Thisdnveriaa

Iha Identical format of a CHNfl fl250 drfve, one u(Commodores most durable lioppy drjvea.

MODEL SFD-1001 Sector^Cylinfler —
DRIVES 1 Sec lor/Track 23-29

HEADS/DRIVE 2 Bytes/Ssctor 256

STORAGE CAPACITY (Pef Unil) Free Blocks 4133

Formatted 106 Mb TRA^JSFER RATES [Bytes/Sec|

MAXIMUM (Each Driva) Internal 40 Kb
Sequential File 1.05 Mb lEEE-4ea Bus l.ZKtJ

Relative File 1.04 Mb ACCESS TIME (Milliseconds)

Disk System Track-lo-tracK
*

Buffer RAM {Bytes) 4K Average track
*i

DISK FORMATS [Each Drive) Average Latency 100

Cylinders (TracKs) {77} Speed IRPM) 300

ORDER NOW WHILE STOCK LASTS!
Sena orcall your orders 10 NoHfiw»l MusJc C«n1«rjnc. SS^N. Woll Rd., WhevUng IL SODW. ^]2-520-

a54n F m nrro?^idnrd&rr.adGi2S50forSuperpyl 1^0 JLiShuiooi.in AbB i^e im^^bn^n^io si^^sTiJ^n

ana Ib^b &4K memc^rv expansion For sollwrneaod S3 50 lor lirsi ana 12 00 for each aadjUo^ac bookof
program Canadian shipping charges are double U S ForCOD orders add S2 20 per box shipped All orders

musrbepaidinU S lunds include phone numbers wilh area codes Do not use PO Boi^.onlyUP^shiopaolfi

addresses A 2 week hold will be imposed on all orOers placed wMh a personal or business chcct^ COD
orders shipped in LJ S only and cash on delivery, no checks 30 day warranty on all producis Irom NWM. inc

Nc manulacfurer warranly WWW reserves Ihe r^ghl lo limii quanlilies lo slock on hand and ad|usl pricea

wilhoul nolic^^

All prlc^ quol«d in US dollar*.

££
What's a
G'Link?

Glad you asked,

A G-Link is an interface that lets you expand your 64 to an

incredibly powerful system by letting you connect all of

Commodore's IEEE disk drives and peripherals. With the G-Link,

you can use devices from the fast, reliable 4040 dual drive to

the high-storage sfd-1001 single drive in just the same way as

you use your 1541, You can switch between the serial devices

you're using now and the G-Link supported ieee devices with

the flick of a switch. And the G-Link is transparent, meaning it

won't interfere with the operation of most software: as far as

your computer is concerned, you're just using a super-fast 1541

drive!

If you're ready to upgrade your system, or you have some IEEE

equipment you want to connect (which includes printers,

plotters and alt kinds of scientific instruments), consider the

inexpensive G-Link. Order from the card in the centrefold.

•' COMMODORE "

parts & service
DAVE TAYLOR ENTERPRISES

4400 N. Big Spring "3 ' Midland, TX 79705

915-686-0535

FLAT RATE REPAIRS

C64 repair $45.00

1541 $50.00

C128 repair $65.00

1571 repair $75.00

SX64 repair $75,00

MISCELLANEOUS PARTS

C64 power suppiy $19.95

01 28 power supply (repairabie) . $84.95

C64 power supply (repairable) , -$34.95

SX64 transformer $29.95

C64 Diagnostics $150.00

C128 Diagnostics $150.00

1541 Diagnostics S165.00
Diagnostician (0-64/1541/1571) . .$6.95

•• CALL FOR COMPLETE PARTS PRICE LIST "

All prices FOB. Midland Tx. Prtcea sub|ecT To

charge wirhout notice, Texas residenia add 7 5%
sales lax All sales and repairs carry a (20) day war-

ranty, except iC'3 which have been pre Tested,

repafra do not mciude external power supplies or

return shippmg. please add 3% for VfSA'MC

charges.

915-686-0535

UNLEASH THE DATA ACQUISITION AND
CONTROL POWER OF YOUR COMMODORE C64 OR C128.

We have the answers to all your control needs.

NEW! 80-LINL SIMPLIHED
DIGITAL I/O BOARD

Create your own aulostart dedicated

controller wtfhout relying on disk drive.

Sockci tof standarJR<>Mi:anridge.

4() separate bulTcrcd digital output lines can

each direclly switch 50 volts at 500 mA,
40 separate digital input lines. (TTL).

[/O line^ controlled through simple memory
mapped pons eaci) accessed via a single

statement in Basic. No interface could be easier

to use. A total ol ten S-bit ports.

Included M.L. driver program optionally called

as a subroutine for fast convenient aceess to

individual I/O iioes from Basic.

Plugs mto cxinsputcr's expansion pon. For both

C64 & CI2H. I/O connections are through a

pair of 50-pin professional t>'pe strip headers.

Order Model SSIOO Plus. Onb 5119! Shipping

paid USA. Includes extensive documentation

and program disk. Each additional board $109.

"Aetakcpndciiiourinlerlao-'lHMrddocumemationand

son«ari; support, which iv available separalely Cot

I'XdrnmjEion CrflJil ajiainsr (ic^i order.

SSUW Plus, Sm M\¥22&. \ixm\b. iW.

OUR ORIGINAL ULTIMATE
INTERFACE

• Universally applicable dual 6522 Versatile

Interface Adapter (VIA) board.

Industrial control and monitoring. Great for

laboratory data acquisition and instrumentation

applications-

• Intelligently control almost any device,

• Perform automated testing.

• Easy to program yet extremely powerful.

• Easily interfaced to high-perfomance A/D and

D/A converters.

• Four 8-bit fully bidirectional I/O ports & eight

handshake lines. Four 16-bit timer/counters.

FuU IRQ interrupt capability. Expandable to

four boards.

Order Model 64IF22. $169 postpaid USA.
Includes e>:tensive documentation and programs

on disk- Each additional board $149. Quantity

pricing available. For both C64and CI2&.

A/D CONVERSION MODULE
Fast- 16-channel. 8-bit, Requires above. Leaves all

VIA pons available. For both C64 and Ci28.

Order Model 641F ADC0816,OnJy$69.

SERIOUS ABOUT
PROGRAMMING?

SYMBOL MASTER MH.Tl-PASS SYM-
BOLIC DlSASStMBLKR. Learn to program

like the experts! Adapt existing programs to

your needs! Disassembles any 6502/6510/

undoc/65C02/8502 machine code program

into beautiful source. Outputs source code
files to disk fully compatible with your MAE.
PAL. CBM. E>evelop-64, LADS. Merlin or

Panther assembler, ready for re-assenibly and
editing. Includes both C64 & C128 native

mode versions. 100"^o machine code and
extremely fast. 63-page manual- The original

and best is now even better with Version 2-1!

Advanced and sophisticated features far loo

numerous to detail here. S49.95 postpaid

USA.

C64 SOURCt: CODE. Most complete

available reconstructed* extensively com-
mented and cross-referenced assembly

language source code for Basic and Kernal

ROMs, all \6K. In book form, 242 pages.

$29.95 postpaid USA.

PTn-6510 SYMBOLIC DEBUGGER for

C64. An extremely powerful tool with

capabdities far beyond a machine-language

monitor. 100-page manual. Essential for

assembly-language programmers. $49.95

postpaid USA,

MAE64 version 5,0. Fully professional

6502/65C02 macro editor/assembler. SO-page

manual. $29,95 postpaid USA.

NE>N
All prices m US dollars

SCHNEDLER SYSTEMS
Dept. 91, 25 Eastwood Road, P.O. Box 5964

Asheville. North Carolina 28813 Telephone 1-704-274-4646

NEWADD

Volume 9^ Issue 1

Publisher

Richard Evers

Editors

Miilcolin O'Brien

Nick Sullivan

Chris Zamara

Editorial Assistant

Moya Dnimmond

Custumer Service

Rcnanne Turner

Accounting

Donna Evers

Contributing Writers

Ian Adam

Jack Bedard

Bill Brier

Jim Butterfield

Don Currie

Jim Frost

Miklos Garamszeghy

Eric Giguere

David Godshalt

Thomas Guriey

Adam Herst

D, J, Morriss

Gary Kiziak

Bob Kodadek

Francis Kostella

Kealh Milligan

Mike Mohilo

Noel Nyman

Adrian Pepper

Steve Punter

Tony Romer

Herb Rose

Audrys Vllkas

Cover Artist

Jo-Anne Park

Transactor
The Mogazlne for Commodore Programmers

ScrollDir 128 15

by Miklos Garamszeghy
The ultimate directory utility - scroll up and down through your file names, load programs, display

text, and scratch files without typing

Multitasking on the Commodore 128 20
by Mike Mohilo
Run up to four programs simultaneously^ or switch beiween tasks instantly - even BASIC can run in

the background! "I.

Exploring SUBMIT
by Adam Herst

Adam's look at one of the most useful tools in CP/M Plus goes far deeper than the docs

t -

A Machine Language Input Routine

by Garry Kiziak

The bullet-proof, all-purpose, high -performance, configurable, easy-to-use input routine

24

28

36Sprite Rotation

by Jim Frost

A super-fasi ML impiemen laiion oi Transactor'?, "sprite rotate" - a bwon for video game programmers

Structured DATA and Seeding RND 42

by Audrys Vilkas

Something iompletely difforeni: / Chifig. yin and yang, Hexagrams. Ancient Chinese farmers.., and

random numbers

C64 Hex File Editor

by Bob Kodadek
Edit disk files in memory, machine language monitor-slyle

On the C Side...

by Adrian Pepper
Tnsighis into C programming on the 64 and 1 28

Programming in GEOS
by Francis G. Kostella

How 10 get your machine language applications to run under GEOS

46

54
jl - J

56

Departments and Columns

Letters

Bits 11
G-Link on newer computers

Self-Save

Find Joy

Hook, Line and Singer

Easy 128 Key Fix

POKE Poser Figured Out

Data Checker 64
r

Late Nighi TV
Re-Booiing GEOS 128

Never-never land 128D

i
I t

News BRK 77
1

1

C128 developer's package

Mystic Jim's stuff

1988 Commodore Compulerfest

Computer Save

Micro DclcLiive profe^jsionul debugger

Super 81 Utilities for the C64

C128 complete bookkeeping system

Romjet custom cartridge update

SuperbootforC128

Satellite tracking program

Anatomy of ^he 4040 disk drive

CP/M Starter Set from PD Solutions

».

Reviews

Lt. Kernal Hard Drive

by Bill Brier

Super power fur ihe 64 with this fiisi, feaiure-laden hare! drive sysietn

The 1351 Mouse and GEOS 1.3

GEOS was never this easy

67

72

Warp Speed 74
Cinemaware's multi-purpose cartridge brings you far beyond mere impulse power. Engage!

About Ihe cover: WeVe getting just a little bit tired of hearing 8-bit compuiers like the

Commodore 64 and 128 referred to as 'dinosaurs', so for this issue's cover we asked

Toronto artist Jo-Anne Park to remind the 16/32-bit crowd what dinosaurs really look

like. Even at a casual glance you can see there's really very little resemblance to any

microcomputer, even an Atari. '

Jo-Anne specializes in Commodore 64 and Amiga art. She did the cover for an upcom-

ing issue of Transactorfor the Amiga, and we liked her work so much we asked her to

do a Transactor cover - using the C64 - as well. The picture was done using Doodle,

so it's hi-res rather than multi-colour: as C64 graphic artists are aware, creating good

colour graphics in hi-res mode is quite a challenge. Through the ingenuity of creative

people, the 8-bit machines will continue to be viable for a long time to come

Transacrorsfi

phone number]&:

(416J 7B4-5273

Line npBfi Mondays. Wednesdays
and Fridays OWLY

FAX: (416)764-9262

TOLL-FREE OftDEft LINE

1-fl00'24a-27l9 Exienston 911

(for Dfders only; have your VISA or Mastercard

number ready; available !n The U.S. only) ^ _.

TransBcfor is puWlsh&d blmonftily by Transactor

PuWishjng Inc., 85-10 Wesi Wilmol Sireei. Ricli-

mond Hill, Omatto. L4B 1K7. iSSNfl 0338-0153.

Canad^rr Secood Cia^s Mail RegisTrarion No.

7690, Gateway-Ulssis^auga. Oni. US Second
Class ma»t perrnrt pending al Bufjalo, HY. USPS
Posimasiers: send addrasa change-s To. Trrsn^ac-

tor, PO Box 338, Station C, Buffalo. NY, 14209.

Transactor Pi^lisfiing Inc. is ^ no way connected

wHi Commodore BusinasK Machines Ltd. or

Commodore Incorporaled. Commodore and
Commodore product names are i^i^t^r^ trade-

marks tA Commodwe Inc.

Subscriptions:

Canada $19 Cdtv

USA S1 5 US
AllonierES21 US

Air Mail (Overseas aniyj £40 US

Send all subscriptions to: Transaclw PuWish-

ir^ Jnc.p SubBcrtptions Department 85-10 West
Wlhnoi Streei, Richmond l-fliJ, Ontario, Canada,
L49 1K7, (416) 764-5273 For best resists, use
the postage paid canj at the centre of the m^ga-
aine.

Quantity Orders; in Canada: Ingr&n Sofrware

Ltd., 14T Adesso Drive. ConcoFd, Ontario, L4K
2W7. (416) 736-1700. In the USA: *PD (Interna-

lionai Per^ical Distributots), 11760-B Sorrento

VaJlev Road, San Diego, CaMomta, 92121
,
(619)

4^1-5926; ash for Dave Bueschar. Ouar^ or^

ders/enquiries are also welcome from ixmipift-

sffeoftwara dlsTHbutors in El^ l^, Eurcp« aif\d

Scandinavia. Please contract: T.G. Hamiklon

(W/S) Ltd., Tel: 021-742 5359; Fax: 021-742-

2190; or contact Tr^sactor (UK) direct at LJnil 2,

Langdafce Grove, Ingham, Notts. NG13 8S^.
tel^hone 0949-39380. In Australia, contact ^

Transactor (y^straiia) Pty. Limited, 35 CaJder Cr„

Holder, ACT 2611. Australia. Phone 61 62
863584.

EcHlorial contributions are welcome Or^ orfglnf^,

IHoviously unpublishad matarial will be fionsid-

Hred. Program liS^s and arlides, Includirig

BITS submissions, of more than a few Ir^^,

should be provided on dieK. Preferred Jorniat Is

1541-format with ASCII text Mies, Manuscripts

should be typewritten, dout>Je-apaced, with spe-

cial characters or tormats (Marly marKad. Photos
should be ^ossy black and white prints. l]lusira-„

tions ^ouid be on white paper with bladi ink on-^

ly. Hi-res gr^hlcs hies on disk are preferred to

hardcopy lUustralioEis wt^n pc^i^e.
^

All n^arerlai acce^^ed becomes tl^ pn^»rty of

Truisactor Publt^ing Inc., except by special ar-

rangement. All materia is copyright by Transactor

Publishing Inc. Repro«kiCtlon in any form without

p^Frnlssion is In violation of applicable Laws. Write

to Ihe Richmond Hill address for a writer's gukfe.

^

The ot^nions expressed in contributed artlctss

are not necessari!/ those of Transaclc Publish-

ing tnc Atthaugh accuracy Is a major obiecfivSt

Transact!^ PublLshrng Inc. cannot assume Sj^^bihty

tor em^rs in artldes or programs. Programs listed

In Transactor, and/or apposing on Transactor

disks, afa copynght tiy Trantactc Publishing inc.

and may not t>e duplicated or distributed withoul

permission.

Production
In-house wi^ Amiga 2000 and

Proteesional Page

Rnal output by Vellum Print &
Graphic Services, Inc., Toronto l" I -

^^
' " Printing

Printed in Canada by
Maclean Hunter Printing

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

VERIFIZER should be run before typing in any long program

from ihe pages of Transactor, It will lei you check your work

line by line as you enter the program and catch frustrating typ-

ing errors. The verifi/.er concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of VERIFIZER here: one each for the

PET/CBM, V1C/C64, and C128 computers. Enter the applica-

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since youMI want to use it every

time you enter a program from Transactor, Once you've RUN
the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIMZCR on with;

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072J to enable the CI 28 version {off: SYS 3072.0)

Once VHRinzER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note thai these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIC).

Note: If a repon code is missing (or ''-*')
it means weVe

edited that line at the last minute, changing the report code.

However, this will only happen occasionally and usually only

on REM statements.

With VERIFIZER onJust enter the program from the magazine

normally, checking each report code after you press RETURN
on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession while checking

the report codes as they appear Once the program has been

properly entered, be sure to turn VERinZER off with the SYS

indicated above before you do anything else.

VERiFi/iiR will catch Iransposilion errors like POKE 5238K0

instead of POKE 53281.0. However. VERIFIZER uses a

"weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro-

duce the same report code, but this will rarely happen, (veri-

FiZER could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually). VERIFIZER

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan-

dard keyword abbreviations (like nE instead of next) will not

affect the verirzer report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datascite be aware that tape opera-

tions can be dangerous to its health. As far as compatibility

with other utilities goes, verifizer shouldn't cause any prob-

lems since it works through Ihe BASIC wann-start link and

jumps to the original destination of ihe link after it's fmished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2,0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20 cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40cs=cs+a: next i

GK 50

:

OG 60 if CSOI5580 then prim"***** data error *****": end

JO 70 rem sys 634

AF 80 end

IN 100:

ON 1000 data 76,138, 2,120,173,163, 2,133,144

IB I010datal73, 164. 2,133,145, 88, 96.120,165

CK 1020data 145,201, 2,240, 16,141,164, 2,165

EB 1030data 144, 141, 163, 2, 169, 165, 133, 144, 169

HE 1040data 2,133,145, 88, 96, 85,228,165,217

01 I050data201, 13,208, 62,165,167,208, 58,173

JB 1060 data 254, I, 133, 251, 162, 0,134,253, 189

PA 1070 data 0, 2,168,201, 32,240, 15,230,253

HE 1080 data 165,253, 41, 3,133,254, 32,236, 2

EL 1090 data 198,254, 16,249,232,152,208,229,165

LA Il00data251, 41, 15, 24,105,193,141, 0,128

Kl 11 10 data 165,251, 74, 74, 74, 74, 24,105,193

EB I120datal41, 1,128,108,163, 2,152, 24,101

DM Il30data251, 133,251, 96

Transactor Juty 19dd: Volume?, Issue 1

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version

LI 20cs=0

BE 30 for i=828 to 958:read a:poke i,a

DH 40cs-cs+a:next i

GK 50;

FH 60 if CSOI4755 ihen print"***** data error *****": end

KP 70remsys828

AF 80 end

IN 100:

EC lOOOdata 76. 74, 3,165,251.141, 2,

EP 1010 data 252, 141, 3, 3, 96,173, 3,

OC 1020 data 3,240, 17,133,252,173, 2,

MN 1030 data 251, 169, 99, 141, 2, 3, 169,

MG1040data 3. 3, 96.173,254, 1,133.

DM 1050 daia 0, 160, 0. 189, 0. 2,240,

CA 1060 data 32,240. 15.133,

NO 1070 data 133. 90. 32. 183.

OK 1080 data 232, 208, 229. 56,

AN]090data 32.210.255.169.

GH llOOdata 89, 41, 15. 24.105,

JC 1110data165, 89. 74. 74, 74,

EP 1120data 32,210.255,169,146,

MH 1130 data 32,240,255.108.251.

BH lUOdalalOl, 89.133, 89, 96

3. 165

3.201

3.133

3. 141

89, 162

22, 201

91,200. 152, 41, 3

3.198. 90. 16,249

32,240.255,169, 19

18. 32,210.255.165

97, 32.210.255

74. 24, 105, 97

32,210,255, 24

0, 165, 91. 24

NEW C128 VERIFIZER (40 or 80 column mode)

KL 100remsave"0:cl28vfz.]dr".8

01 llOremc-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072.0 now works.

KK 140 rem

GH 150 rem by joel m. rubin

HG 160 rem* data loader for "verifizer c 128"

IF 170 rem * commodore cl28 version

DG 180 rem* works in40or 80 column mode!!!

EB 190ch=0

GC 200 for j^3072 to 3220: read x: poke j,x: ch=ch+!(: next

NK 210if cho 1 8602 then print "checksum error"; stop

BL 220 prim "sys 3072, 1 lo enable

DP 230 print "sys 3072.0 to disable

A? 240 end

BA 250 data 170,208, 11.165.253,141, 2. 3

MM260data 165,254. 141. 3, 3, 96, 173. 3

AA 270 data 3,201. 12,240. 17,133.254,173

FM 280 data 2, 3.133,253.169.39.141. 2

IF 290data 3,169, 12,141. 3. 3. 96.169

FA 300 data 0,141. 0,255,165. 22,133,250

LC 310datal62, 0,160, 0,189, 0. 2,201

AJ 320 data 48.144. 7,201. 58,176, 3,232

EC 330 data 208, 242. 189. 0. 2.240, 22,201

PI 340data 32.240. 15,133,252.200.152, 41

FF 350data 3,133,251, 32,141. 12.198.251 -

DE 360 data 16,249,232,208,229, 56, 32.240

CB 370 data 255. 169. 19, 32,210,255,169, 18

OK 380 data 32,210,255,165,250, 41. 15, 24

ON 390 data 105. 193, 32,210,255,165.250, 74

01 400 data 74. 74. 74, 24.105,193. 32,210

OD 410 data 255, 169. 146. 32,210.255, 24, 32

PA 420data240, 255, 108.253. 0,165,252, 24

BO 430 data 101, 250, 133,250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BA-

SIC "program generator" which creates a machine language

(or BASIC) program on disk, we have created a "standard

generator" program that contains code common lo all program

generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When-

ever you type in a program generaior, the listing will refer to

the standard generator. Load the standard generator /?/\^^ then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is Just an easy way for you to put a machine language

program on disk, using the standard basic editor at your dis-

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

h V

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor utility

like Verifizer

rem transactor standard program generator

n$-"filename": rem name of program

nd-000: sa=O0()00: ch=00000

for i=I lo nd: read x

ch-ch-x: next

if ch then print "data error": stop

print "data ok, now creating file,"

restore

open l,8.i;'0:"+n$

hi=int(sa/256); lo-sa-256*hi

print#l,chr${lo)chr$(hi);

for i=l to nd: read x

print#l,chr$(x);: next

close 1

print"prg file *";n$;"' created..."

print"lhis generator no longer needed."

MG 100

EE no
LK 120

KO 130

EC 140

FB 150

DE 160

CM 170

CH 180

HM 190

NA 200

KD 210

HE 220

JL 230

MP 240

MH 250

IH 260

Transactor July 1966: Volume 9, Issue 1

I\

Evolution in the Eight-Bit World

First, a brief note: no. you haven't missed an issue, this one re-

ally is about two months late. That's pretty late for a bi-

monthiy magazine, and it certainly doesn't do much to instill

confidence in readers and advertisers (both current and poten-

tial}. We thought we'd let you know what*s going on, and why

you can believe us when we say we're back on track now.

Product ion-wise, we now have a schedule that guarantees that

a magazine gets produced in 56 days, barring unforseeabie

catastrophes of biblical proportions. This issue remained im-

printed for so long due to financial difficulties within the com-

pany (read: not enough money) that have since been cleared

up with an influx of capital and business know-how. Our

spreadsheet shows good news ahead, so the reliable produc-

tion schedule is backed by a financially stable company.

Newsstand circulation has just increased again as we appear

on (he shelves in Waldenbooks in the U.S., so the 8-bit Trans-

actor is still growing even as the 16-bit computers increase

their presence in the market.

subway stop, merchandising, strictly IBM job to an all hours,

long haul, 90 per cent 8-bit, 10 per cent Amiga, editing job.

Fm starting to learn the ropes around the office and on Com-

puServe. It's a strange environment but it fits me well. Hmm...

The changes you will experience will be of a different nature.

For one thing, we're going Co be doing GEOS coverage.

We've had letters requesting it and some submissions. Expect

to see articles on GEOS programming, starting with this issue.

For the many people who've requested ^4L subroutines, we

have two in this issue - one for the tricky job of sprite rotation,

and another that is perhaps the ultimate in configurable input

routines.

WeMl also be featuring articles with a "pushing the limits"

theme. These will be concerned with doing things that are of-

ten considered to be beyond the capabilities of the 8-bit ma-

chines. For a sample of what I mean, take a look at the Lt.

Kemal article in this issue.

Enough talk of the real world: we take you now to the origi-

nally scheduled editorial for this issue.

4: 4: * * 4!

With this issue we welcome a new member to our editorial

staff, which brings us up to a three-man team. Malcolm

O'Brien has been with us a few months noK and has had

much to do with the creation of this magazine. We think you'll

like the flavour that Malcolm's touch brings to the magazine,

as there will be more focus on real-world and "power-user"

applications; as you can see already, GEOS will no longer be

a stranger to these pages. The following editorial, written by

Malcolm himself, will complete the introduction.

\

Evolution means changes. Lots of changes. Probably more of

them for me than for you. Tve gone from a nine to five, two

You've already noticed the inclusion of C coverage. Response

to this has been uniformly favourable and we'll continue doing

it. This is a recognition of the fact that many C64 and C128

users are also using other languages on other computers at

work, at school and at home. C is the main one but there are

others as well. Coverage for other languages such as COMAL
will probably be appearing in Transactors of the future.

+

These are significant changes but they reilect the ongoing evo-

lution of the user base. Haven't we all been reminded for years

that '*there*s nothing as constant as change"? It's true - even

though they told us in programming school that constants

weren't supposed to change. -

Malcolm O^Brien

Transactor July 1988: Volume 9. Issue 1

e

T

t

e
s

Il's about time: This is a reply lo a letter published in Trans-

actor (*^Clock Setting", Letters, Volume 8, Issue 5). where

reader David Kuhn briefly describes his computerized light

and automatic sprinkling system controller and Lt^^^ri^s

whether the CI 28 can read an external real time clock to reset

its internal clocks following a power failure.

An excellent product, which should do exactly what the reader

(and many others) requires, is the Model CCSZ Cartridge from

Jason-Ranheim, 1805 Industrial Drive» Auburn, California,

USA 95603. Their phone numbers are (800) 421-7731 and

(916) 823-3284. Their price is $49,95 (US), plus shipping.

The CCSZ not only includes a battery-backed Clock / Calen-

dar, but 8K of battery-backed RAM and a modified operating

system in ROM to support the features. The CCSZ can auto-

matically download and run a program when power resumes

following an outage, and even maintains a power-off/power-on

log in RAM. Moreover* the cartridge, which works in both the

C64 and CI 28 (in the CI 28 mode), will automatically recog-

nize which computer it is being used with.

Now for the commercial message: The CCSZ from Jason-

Ranheim is fully compatible with the control interface boards

which we (Schnedler Systems) manufacture for the C64 and

CI28, and we believe many readers will be interested In both

as a compatible system. Our Model SSIOO Plus 80-line Sim-

plified Digital I/O Board is particulariy attractive in this regard

because it includes a standard 44-pin canridge socket for re-

ceiving cartridges such as the Jason-Ranheim CCSZ, as well

as standard EPROM canridges. Thus the SSIOO Plus may be

viewed as a digital data acquisition and control interface com-

bined with a single-slot expansion motherboard- The price cur-

rently is sdll only $119,00 (US), including the manual and

program disk. Shipping to US addresses is included in that

price. For shipping to Canada add $10.00, and add $20,00 to

other countries.

Steven C. Schnedler

Schnedler Systems

25 Eastwood Rd,

RO. Box 5964

Asheville, NC 28813

(704) 274-4646

i«i

Time backed-up: The problem that David Kuhn expressed in

the Letters column of Volume 8, Issue 5, can be overcome by

relating to a previous article in Transactor. In Volume 6, Issue

6, Jean Des Rosiers, the author of "Home Control on a VIC"

interfaced various hardware projects for a home secu-

rity/controller run by a VIC-20. Amongst these projects was a

battery back-up In case of power failure. This involved alka-

line batteries added into the power supply circuit. The

schematic diagrams are in Figures 5 through 7, inclusive, on

page 70 of that issue.

1 made a similar project and used the schematics from this pro-

ject to have the battery back-up. 1 hope to upgrade this to

NiCads with current "steering'' diodes.

I feel that this sort of device is what's needed with David's

C128. He will still have to obtain the schematic of the 128's

power supply to know what has to be added.

Daryl Leopold

Vancouver, British Columbia

Transactor July 19a8: Volume 9, Issue 1

Another M/L aficionado: !n a recent letter to your magazine,

Bob Tischer expressed his interest in a "Continuing Education

Cour?ie" in 6502 assembly language. 1 thought it was a great

idea, and in an effort to let you know that there are certainly

others who would appreciate such a course. I write this letter.

Robert Gallant i

Comer Brook, Newfoundland
,

>_^

Revving up to autostart; I am writing to answer Patrick G.

Demets' question about building his own cartridge in the arti-

cle entitled '*ML EPROM Burner^". He found that by analyz-

ing a cartridge entitled "Visible Solar System", the addresses

$8004 to $8008 did not contain the code ^^CBMSO", which he

had expected to find.

Under normal circumstances, when the computer is turned on.

it checks the location mentioned for the specific code above. If

the code does exist, it will begin executing the ML program

pointed to by the vector at $8000/S800U and the program

pointed to by the $8002/$8003 vector will be the warmstart

procedure. If the code is not present in locations $8004 to

$8008, however, control is given to the program pointed to by

the vector at $aOOO/$aOOK and the warmstart is pointed to by

Sa002 to $a003- Locations $a004 to $a008 need not contain

the code CBM80, An autostart canridge addressed for $aOOO

to $bfff will replace BASIC.

The above procedure is the common method of cartridge de-

sign. Its mode of operation is quite simple. On power-up, the

6510 microprocessor jumps to the ML program pointed to by

$fffc/$fffd. This program has many tasks, including testing for

an auiosiari canridge.

Mr Dcmets mentions that all of the JMP's and JSR's are lar-

getted at locations beginning with $e. The 64 has a third ad-

dress range for cartridges. This is $cOOO to $ffff. Evidently.

Mr. Demets' cartridge occupied this range along with $8000 to

$9fff (perhaps even SaOOO to Sbfff). The autostart program

pointed to by locations Sfffc to $fffd is located at $fce2. How-

ever, a cartridge with the address range $eOOO to $ffff will re-

place the computers own memory ai this location. Therefore,

there will be a new startup vector at $fffc/$fffd (not to mention

a new NMl at Sfffa/Sfffb and a new IRQ/BRK vector at Sff-

fe/$flTO- The new vector may point to any other memory loca-

tion, but wherever it does point, that is the new autostart pro-

gram. If the 64 autostart program is replaced, the code at loca-

tions S8004 to $8008 is irrelevant (unless, of course, the new

autostart program calls for it).

+

Bernard Epsilon Wolfe

Oakville, Ontario
t*

Book List?: First of all, 1 would like to express my apprecia-

tion for your magazine. I fmd Transactor to be consistently

excellent for quality, technical level, usefulness of material,

friendliness, and in many ocher ways. (I have been reading it

for about one year so far, and just ordered all available back is-

sues.)

r

Perhaps the only thing I miss in it is some ongoing informa-

tion on good computer books. It would be a great help lo those

who, like me, have not been very long in the field, and find

themselves hunting among a morass of trivia in the hope of

finding good and reliable publications - the best of which are

often little known.

An annotated list of the best books, revised and reprinted may-

be twice a year, plus ongoing reviews of new interesting titles,

would be great. But even just a list of books you recommend,

with one line of evaluation for each, would go a long way. I do

hope you will find it feasible to do something along these

lines. I

In the meantime, I wonder if you could suggest some good

ML books, either C64 specific, or for the 6502. 1 am geuing a

lot from Transactor articles, and have Jim Bulterfield\s and the

COMPUTE! ^^Mapping...'^ and ^\..Kemar* books. What I am

looking for is. say. the equivalent of the Neufeld and Immers'

books, for ML programming. I hope you can help. Thank you.

James G. Vargiu

Atlanta, Georgia \

I

r

Sounds like you already have a pretty fair collection, James.

Jim Bmtetficld's hook is an excellent inlrodmtion to machine

languoi^e programming, and Mapping the Commdore 64 is

also very useful, ff you're looking for some hard-core refer-

ence material, you might also be interested in The Complete

Commodore Inner Space Anthology, which is published by a

very reputable Canadian company (the one that publishes

Transactor, strangely enough). The CCISA has been around

for a long lime now. long enough that it doesnt cover the

CI28, but it's stilt a gold mine of concentrated information on

the other 8-bit Commodore machines. As for an annotated list

- well, how about it readers? What are your favourites, and

why?

All Together Now: I would like to suggest a new and useful

way to use the 7.000.000+ Commodore 64 and 1 28 computers.

It is by using them for a parallel processing project. First I will

describe Project #1.

h has long been suspected that Pierre Fermat was right when

he wrote that there are no solutions to Xn + Yn = Zn for inte-

gers X, Y, and Z unless n=2. Less well known is Leonard Eu-

ler's generalization of Fermat's theorem. Euler conjectured

that an Nth power (N > 2) was never the sum of less than N

smaller Nth powers.

I

In 1966. a computer search found a counterexample to Euler^s

conjecture. It is that 1445 = 1335 + 1105 + 845 + 275. Since

then» no others have been found. The sad fact is; getting com-

puter time at large installations is not easy.

Transactor 6 July 1968: Volume 9, Issue I

If the search for numerical examples were programmed for the

Commodore machines, it is easy to see (hat running the prob-

lem on many machines would give the equivalent of days of

time on large IBM. Amdahl. Cray, etc. machines. Suppose 100

Commodore computers devoted 100 hours in 6 months (less

than four hours a weekend) lo the problem. Thai is 10,000

hours or, with an improved speed factor of 1,000 for main-

frames, 10 hours of equivalent mainframe time for that six

month period.

By increasing the number of Commodore 64 and 12R comput-

ers working on the project or by increasing the number of

hours worked per machine, any speed factor can be dwarfed

and many days of equivalent mainframe time can be obtained.

I would not be surprised to learn of Commodore computers

that can be made available for 100 hours a week. With 100

such machines, we could have ten hours of equivalent main-

frame lime per week.

The specific task proposed can be separated into smaller tasks.

Using 6th powers as an illustration, one computer can look at

summing from 1 to 100 as a sixth power, a second al 101 to

120, a third at 121 lo 140, and so on for suitable divisions

which will lead to approximately equal time to complete. In

addition, a search for additional counterexamples to Euler's

conjecture must be made for seventh powers, eighth powers,

etc. It will not be difficult to set up search lists for 100 com-

puters.

Other tasks scan be tackled in a similar manner. I have been in

touch with two eminent mathematicians. Drs. Daniel Shanks

and John W. Wrench Jr.. who are among those who can sug-

gest other reasonable projects. If Project #1 can be started, I

am certain that suggestions for other work will be forthcom-

ing.

To get such a co-operative effort off the ground, several steps

are needed. One is to find 6502 machine language program-

mers who will write efficient code to tackle the problems. A
second step is to find an overall project manager, and probably

a series of specific project managers. The managers would

have the task of seeing to it Jhal the code was written, disks

with the projects were prepared and mailed to solvers, or put

on bulletin boards. A third step is collecting results, which in

most cases will be "no solution found''. When these are put

together, no one will have to research the same range for the

project.

I would appreiate the comments of your readers and of the

magazine staff. 1 have no doubl that the idea is a good one and

that it can be improved. Are there people willing to help? Are

there computer clubs willing to help? The club could be a spe-

cific project's manager as well as a group of solvers. Let them

write me or the magazine.

Vincent J. Mooney Jr.

607 Wyngate Drive

Frederick, MD 21701

Very interesting idea, Vincent, though we shudder a bit at the

amount of organization it would require. The primary diffi-

culty, once the code was written - which would not too be diffi-

cult in the case of the Euler project - would be the assignment

of ranges to individuals in such a way as to get exhaustive but

not overlapping coverage^ The problem is a bureaucratic one

and. as with all bureaucratic problems, any solution is going

to be time-consuming. Perhaps an on-line service with a lot of

subscribers would be the best vehicle for organizing the pro-

ject, as some kind of rapid, centralized communications facil-

ity would probably be requisite if the effort were not to col-

lapse under its own weight. By the way, "Fermat's last theo-

rem" was recently proved (with the aid of computers, I gather),

ending at last a couple of centuries of head-scratching. It's

amazing that both it and the four-colour theorem have been

disposed of in the last ten years. Not to mention the save-@

bug. Do keep us informed. We hope you'll receive an enthusi-

astic response.

LQ & The Bible: In an old Transactor (Letters, Volume 7, Is-

sue I) magazine, there is an item concerning the data entry of

the New Testament, Was this project ever completed? Where

can 1 obtain or purchase a version of the Bible for either a C64

or IBM/XT?

1 have another question I'd like lo ask. How does one go about

building an interface for a true RS-232 port to a C64 serial bus

printer? Can such a device be purchased? I would like to use

my letter-quality Commodore printer on my IBM/XT

Garth Usick

Regina, Saskatchewan

Well, Garth, if there is such an interface it has escaped our no-

lice. However, there was (is?) an interface for connecting your

CBM serial bus printer to the IBM via the parallel printer

port. We seem to remember it as an Omnitronix product, A lo-

cal BBS user here in Toronto purchased the device and ex-

pressed his satisfaction with both the device and the service.

Perhaps our readers can provide more information. Biblical

text is now available on Commodore disks (as evidenced by

the recent ads we've seen since receiving your letter) but we

really don't know if this is a product of the project described in

Volume 7, Issue I.

Yet another vote for the ML column!; As a Commodore fan,

1 would like to know if there are any packages developed, or

under development, that make use of the 1764 RAM expan-

sion. Special programs such as RAM disk assemblers and

compilers would be a great boost to the 64 programming envi-

ronment! Before I leave the topic, is the emulation software

included truly compatible? Can you run a word processor and

tell it to use drive 9 (your RAM disk)? I would also like to add

my vote for the assembler subroutine column, since I, like

many of your readers, am missing vital routines that must have

been written! Writing them again is not very productive.

Transactor Juh^ 1966: Volume 9, Issue 1

Your magazine comes out on top in the Commodore world

when it comes to good solid information. Keep up the good

work!

Amir Michail

Willowdale. Ontario

GEOS uses REUs to a limited extent. The anticipated GEOS
upgrade will almost certainly use it to greater advantage. Pa-

perclip U! uses the REUfor spell checking and Big Blue Read-

er uses it to buffer file transfers. Most sofnK'are needs to he

rewritten to use the REU although some of the more "well-

behaved" ones work with RAMDOS. Disparate data storage

methods raise the compatibility question. Check out "On the C
Side^' in this issue for tips on using the REU with Power C.

REUs and Copyrighls: According to the introduction to Dale

Casiello's article on RAM Expansion Cartridges in the Volume

8. Issue 2, the 1700 and 1750 RAMs work with the C64,

(There was also an article in TPUG Magazine, Issue 22, by

Tim Grantham, where he stated that Commodore Canada had

assured him that the 1750 would work with the C64.) Is the re-

verse true, too? Pm soon going to be moving up to the 128

and if my 1764 RAM will work with it, I would like to stay

with it for now. Customer Service at West Chester says it

won't work, but then they want to sell more 1750s, don't they.

Also, have any of your hardware hackers come up with a bat-

tery-backed system for the 17xx RAMs so ihey will retain

their memory when the system has been powered down (or

aren't they the right kind of RAM chips to do this with)?

Now for anoiher query. With all the discussion about copy-

rights in the T and other magazines, Tm curious about an arti-

cle I saw in a British magazine. Commodore Computing Inter-

nationars January 1988 issue. The article seems to be a word

for word duplication, including the comparison tables, of Mike

Garamszeghy's review of the 1581 disk drive in theT (Volume

8, Issue 3). The accompanying program and a paragraph de-

scribing it were deleted, but the editors seem to have missed

an earlier reference to the program in the body of the text. The

article is credited to Mr. Garamszeghy. but there's no mention

of the T. The magazine also has no copyright notice with iheir

masthead, as you do.

{*

Also, in the past three issues of CCl, there has been a series of

Mike*s articles on the burst mode that are virtual reprints of

his series in TPUG Magazine some months ago.

I don*t mean to stir up any hornets* nesis, but I am curious,
+

James Greek

New York, New York

Our URS (usually reliable source) tells us that the 1764 will

work with the CI28. We have heard of a schematic for adding

another 256K to a 1764 but we aren't aware ofanyone using a

hatferv-backed REU. It sounds like it could he a vejy popular

hack jhough. In the matter of copyrights, Mike informs us that

CCI reprinted the articles with his permission. Since he holds

the copyrights on those articles, the decision is his and his

alone.

Answers, anyone?: 1 recently picked up an Atari joystick for

$10 in a closeout. It works fine as a joystick, with the T-J

switch flipped to J, but I can*t figure out what it does as a

track balU other than mess up the keyboard, making it neces-

sary to read it with interrupts disabled. I wonder if it could be

rewired as a 1351 mouse? 1 can't find the trackball mentioned

in any of the Atari literature.

Secondly, does anyone have a working conv52 for the CI 28

version of C Power? That*s the function which convens floats

to integers. (1 have the Spinnaker "'Power C" disk.) The C64

version works fine» but the C128 version gives me random

values, based on the fractional part of the number. 1 wrote to

Pro-Line, but the answer I got wasn't very helpful.

Thirdly, is there a version of Buddy (Transactor, Volume 8» Is-

sue 4) that does macros, in the sense that I understand macros?

The Spinnaker Power Assembler, which is, 1 gather, the same

program, has up to three user-defined pscudo opcodes and

three pre-defined multi-instruction pseudo op-codes, but noth-

ing like the usual definition of a macro assembler. To use the

user-defined pseudo op-codes, you have to put in extra ma-

chine language, with things like "jsr eval", and "jsr

put'byte", or whatever Usually I think of macros as some-

thing like:

movd .mac

lda?l

sta?2

lda?l + l

sta ?2-hl

.endmac

movd adrl,adr2

where the syntax can vary a bit from assembler to assembler.

Maybe Fm splitting hairs, since the Ragsdale assembler which

is included with most FORTHs is regarded as a macro assem-

bler.

^

Finally, Fm mildly surprised that there hasn't been more of a

cross-over between 8-bit Commodore types and the Atari ST
on the one hand, and 8-bil Atari types and the Amiga. I should

expect to see the people who bought the C64 as a cheap Apple

II with improved sound and graphics, much lower price, and,

at the time, little available software or support (so you were

forced to become a hacker), to go for TramieFs "Power with-

out the Price"- On the other hand, the people who knew the

ins and outs of display hst interrupt programming on the Atari

800 should now be working with Jay Miner's Amiga chips.

Joel M. Rubin

San Francisco, California

Transactor 10 July 1988: Volume 9, Issue 1

Gol an interesting programming tip, short routine, or an unknown hit of

Commodore mvia? Send it in - ifwe use it in the hits eolumn, we'll credit you

in the column and send you a free one-yearns subscription to Transactor

C64 Bits

G-Link on Newer Computers

For ail of you G-Link users: our favourite IEEE inteiface can

be used with ihe 64C (even though R44 does not appear on

thai board). Simply attach the lead on the G-Link to pin 28 of

the 65] in your 64C and you're in business.

Those of you who wish to use the G-Link on a C128 should

attach the lead to pin 29 of the 8502. For more info on G-

Links, please refer to the Transactor Mail Order section of

News BRK.

POKE Poser Figured Out

Randy Thompson, Greensboro, North Carolina

The answer to Vol. 8, Issue 5*s "Figure This One Outr* is:

1 print"*";; poke 122,0

After reading your challenge, the answer was immediately ob-

vious: Simply POKE a zero into the low byte of BASiC^s TXTPTR

{$7A-S7B) to reset CHRGET, When used in the first line of a

BASIC program, this poke acts as a crude goto command.

Congratulations. Randy! You've won the satisfaction of having

solved the puzzle. We're still waiting on someone to come up

with a second solution. There's a Transactor Bits Book in itfor

anyone who does.

Self-Save

Ben de Waal, Windhoek, South Africa

After using the Commodore 64 and the 1541, the so-called

''save with replace^' bug bugged me even in my bed. After

reading one of your articles I started to delete my programs

before saving them. This was a tedious job because of the

length of the delete command. After a few months of doing

this, I realized that something had to be done.,.

SELFSAVt is designed to delete a program before it is saved.

By only typing SAVE '^filename" the file is first deleted and

then SAVEd.

The "SS Creator" program will create a BASIC program called

*^selfsave" on disk. When RUN, selfsave wilt transfer 32

bytes of ML to S02A7 and 72 bytes to SAOOO. The routine

needs all of the space at $02A7 (up to S02FF) because the file-

name is transferred to that location. The code at $A000 is there

so that it is not in the way of your other routines. The routine

wedges into the SAVE vector and first deletes the file before

saving it as normal. This only happens when devices from 8 to

15 are used and wouldn't affect other devices. If the save vec-

tor is restored, SYS 679 wiJI direct the vector back again. If

you want to disable it, type POKE 818,237: POKE 819,245 and

the SAVE vector is back to normal.

GK 100 print" ** selfsave - ben de waal 97/12/30 *•"

BH 110 nS="selfsave": print "creating the '"nS"' program on disk"

LE 120 nd=200: sa=20{9: ch=19472

*** for lines 130-260, see the standard generator progran on page 5
•**

AN 1000

EE 1010

KO 1020

Fr 1030

FF lOJO

EA 1050

Jfl 1060

FF 1070

DE lOSO

HO 1090

OG 1100

PJ 1110

HP 1120

EG 1130

'BH 1140

AP 1150

EO 1160

data 203,

data 20,

data

data

data

data

data

data

20,

86,

B7,

51,

95,

8,

data 141,

data 254,

data 76,

data 96,

data ia3,

data 197,

data 187,

data 255,

data 149,

8r 1,

20, 20,

20, 32,

69, 32,

65, £5,

48, 32,

8, 157,

157, 0,

50, 3,

133, 1,

237, 245,

162, 183,

Hlr 36,

153, 199,

169, 2,

32, 192,

0, 202,

0, 158,

20, 20,

42, 42,

45, 32,

U, 32,

42, 42,

167, 2,

160, 202,

169, 2,

32r 0,

83, 48,

181, 0,

160, 24,

2, 200,

133, laa,

255, 169,

224, 182,

50, 49,

20, 20,

32, 83,

66, 69,

32, 56,

0, 0,

202, 16,

16, 247,

141, 51,

160, 165,

58, 165,

72, 232,

105, 3,

192, 2,

169. 15,

15, 32,

208, 248,

49, 56,

20, 20,

78, 32,

55, 47,

0, 0,

247, 162,

76, 167,

3, 96,

Ir 9,

186, 41,

224, 189,

133, 183,

206, 246,

168, 166,

195, 255,

96

58, 143,

20, 20,

70, 83,

68,

49,

34

20

65

S^^ 32

50, 47

162, 32, 1S9

73, 189, 127

2, 169, 178

165, 1, 41

1, 133, 1

8, 208, 1

208, 248, 165

160, 0, 177

169, 196, 133

186, 32, 186

162, 188, 104

Transactor 11 July 1968: Volume 9, Issue 1

RS-232 Bus Shelter

Thomas W, Gurley, Canton, Texas

When the RS-232 channel is either OPENed or CLOSEd. the

Kcmal ends ihe routine with clr. It seems that the program-

mers at Commodore believed that anyone using the RS-232

bus must be senile and unable to do anything for themselves.

That is why the Kemal sets aside Ihe receive and ihe transmit

buffers, does the CLR (because memory was affected) and

hopefully selects the correct baud rate for us- The fact that the

Kenial sets aside two buffers for use by the RS-232 equipment

and clears away variables has presented problems to just about

every programmer who has to deal with it. There is an easy fix

for both problems.

To help with the problem mentioned by Tony Valeri (Volume

6, Issue 2, p. 48) wherein compiled BASIC programs fail when

the RS-232 bus is opened, the programmer can set aside the

transmit and the receive buffers just prior to the OPEN state-

meni.

+

100 close 2: rem close always writes a into 248 and 250

110 poke 248,x: poke 250,y

:rem x=rcv buffer page, y=xmil buffer page

120 open 2,2,2,chrS(a)-fchrS(b)+chr$(c)+chr${d)

:rem use your usual values here

When the Kemal finds a non-zero in 248 and in 250, it skips

over the part which sets aside the top of BASIC memory for the

buffers. Because the CLOSE routine writes '0* to the buffer

pointers, the programmer has to assign the buffers every time

after the CLOSE and prior to the OPEN. Even so, when the pro-

gram is compiled, there is no longer a conflict for the top of

memory. You should use a safe memory area above 49152 for

your buffers.

One would think thai if the Kernal knows when the program-

mer has taken control and assigned the buffers himself, it

would realize that memory was not changed and therefore skip

the CLR. Bui such is not the case. For that, you will have to

change the KemaL It's very easy to do. but the solution cannot

be used with existing terminal software.

Those who want to bum their own Kemal into eprgm and

who intend to write their own terminal software can take ad-

vantage of the simple change, as can those who write the Ker-

nal to the RAM underneath.

Change address 65289 from sec (56) to CLC (24), This area of

the Kernal is common to both OPEN and CLOSE. If the carry is

set, a CLR is performed at 57796.

The reason you cannot use this procedure with most existing

software is that the buffers must be assigned by the program as

noted above before open. If this is not done first, the Kemal

will assign the buffers to the top of memory. If this is allowed

to happen, as it most certainly will with most current software,

then the clr is necessary.

On the other hand, if you have the BASIC version of a terminal

program, the change is easy and will allow you to open and

CLOSE the RS-232 channel anytime you want without losing

variables and without clashing with the compiled program.

Blow Your Stack?

Tony Sultana, Farmers Branch, Texas

Error Check adds a Stack Overflow Error to the List of possi-

ble CBM errors- A stack overflow error can occur when loo

many for-NEXT loops or GOSUB routines are nested, or if the

stack is too full during an Evaluate Expression (ieval) opera-

tion {vectored at 778-779).

BASIC Stores FOR-NEXT loops and GOSUB routine information

on the stack - and lEVAL data temporarily. If less than 62 bytes

of storage remains after determining stack space, the basic

operating system displays an *?out of memory error'. Howev-

er, such an error can also occur if the BASIC programming

space is used up. This short basic aid can distinguish between

a stack overflow and a real Out of Memory error.

Here's the BASIC loader:

MK 10 for x=679 to 747: read a: poke x,a: d=dH-a: next

HF 20 if d<>6577 then print"data error": end

PD 30 prini^error check activated": sys 679

GC 50 data 173, 0, 3,141,200, 2,173, 1

CE 60 data 3,141,201, 2,169,195,141,

AF 70 data 3, 169, 2, 141, 1, 3, 169, 96

KG 80 data 141, 167, 2, 96,224, 16,240, 3

LN 90 data 76, 0, 0,138,186,228, 34,144

JE 100 data 3, 170, 176, 244, 169, 221, 160, 2

DF nOdata32, 30,171, 76,101,164, 83, 84

BB 120 data 65, 67, 75, 32, 79, 86, 69, 82

NK 130 data 70, 76, 79, 87, 0, 0, 0,

The source code for the stack checking program:

Opt list, gen, noerr i .

*= $02a7
,

,'

old = $0000
, ^ .

strout = Sable

error = $a465

$0300

$02c8

$030

1

$02c9

#$c3

$0300

#$02

$0301

#$60

$02a7

start

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

rts

cpx

beq

;save old vector

;store new vector

;
protect vector

#$10 ;chk for out of mem
outmem

Transactor 12 July 1986: Volume 9, Issue 1

jump jmp

outmem fxa

old

tsx

cpx

bcc

tax

bcs

stackV Ida

Idy

jsr

jmp error

.byte $53. $54, $41. $43. $4b, $20, $4f, $56

.byte $45, $52, $46, $4c, $4^ $57. $00, SOO

$22

stackv ;goto stack overflow

jump

#$dd

#$02

strout . .

Data Checker 64

Ponlus Lindberg, Veberad, Sweden

This is a useful routine for checking data statements from a

long list and a!so checks for abnormal values (i.e. non-integers

and values outside the 0-255 range).

To use it, LOAD it and l[ST it. Then LOAD the program lo be

cheeked. Now cursor up and hil RETURN on each line of DATA

CHECKER. Now RUN it. *
.

Hold down the space bar to scroll. Any abnormal value will be

indicated by "error!". Note thai if you have typed a lower-

case L for a 1 or an upper-case O as a 0, the program will end

with a syntax error which will show the line number of the of-

fending DATA element.

One other use of JOYID, with minor changes, might be to start

off a program. Instead of Tress any key to begin', how about

'Press a key or fire button to begins
'

NK 10 rem loader for "joyidl"

PK 20fori=828to916: read x: ch=ch+x; poke i,x: next

AE 30 if ch<>9536 then print"data error": stop

KN 40 print "sys828:peek928 to read joystick number"

HB 100 data 169, 0,141,160, 3,133.198,169, 1.141,147, 3

JD 110 data 141, 148. 3,169, 17,141, 13,220,169,255,141,

JP 120data220,l73, 1,220.141,147, 3,173. 0,220,141,148

LB 130 data 3,169.129,141, 13,220,173,119, 2,201, 13,208

NE 140 data 7,169, 0,141,160, 3,240,26,173,147, 3,41

MJ 150daia 16.208, 7, i69, 1,141,160, 3,208. 12,173,148

DF 160daia 3,41. 16,208,179,169, 2,141,160, 3,169,

KP I70dalal33,198, 96, 1, 1

Late Night TV
Jason Farah, Davison, Michigan

This is a "dazzler"-type program that simulates a static pat-

tem on a TV set. Make sure the audio is on.

NP 10forn=49152lo49173

GM 20 read a: poke n,a: next

OJ 30 poke 54273,100: poke 54277,0: poke 54278.255

: poke 54296,15: poke 54276,129

FB 40 sys 49152

FA 50 data 169, 11,141,17,208. 169,0, 141,32,208,105

LF 60 data 1,201, 16,240,245, 141,32,208,76,7, 192

AO 1 readb:bc=bc+l:rc=rc+l:a==peek(64}*256+peek(63)

MH 2ifb=-l then print ^'endofdala'^: goto 9

JM 3 if choa then re- 1: ch=a

BJ 4 if b<>inl{h) or b<0 or b>255 then c$^ "error!"

EA 5 prinl"Hne:"a"dala"b,c$:c$=""

MM6gelq$:ifqS=""then6 '

HG 7ifqS-"r"lhenprinlbc;rc

NK 8 goto 1

JA 9 end

I
I \

Find Joy

Steven F^ Clark, Phoenix, Arizona

Plug joystick inio Port One. Be sure joystick is in Port Two.

Port One,.- Port Two...

Arc you as tired of ihe dichotomy as I am? Try the little rou-

tine listed below, SYS 828 waits for one of Ihe fire buttons to

be pressed, (hen returns the value of the joystick you used: one

or two. You can break out of the wait with a RETURN. When

you gel back from the routine, you'll find your value stored at

928. If you pressed return, the value will be zero. If you

don't wani it in the casselce buffer at 828, any location will do.

Don't forget to move joynum ((he returned value} to a

favourite safe locauon.

Hook, Line and Singer

Chuck Lam, San Francisco, California

Here is an interesting trick for use with the 1660 modem (and

maybe other modems with a built-in speaker).

First unplug the telephone cord from the modem and type;

I

poke 56579,peek(56379) or 32:

poke 56577,peek(56577) and 223

Now play a music program or any program that uses sound;

you should be able to hear the sound from your modem's

speaker. Although the sound quality is not really good, it is al-

rnost noise free. And at least you know another interesting

thing about modems.
I

I

After you finish playing with this trick, type:

poke 56577,peek(56577) or 32

and plug the telephone cord back into the modem.

Note: The above pokes lake your modem off-hook, so be sure

you unplug the telephone cord from the modem.

Transactor 13 July 1988: Volume 9. Issue 1

C-128 Bits

Re-Booting GEOS 128

Richard D. Young, Orleans, Ontario

GEOS 128 functions effonlessly with the 1750 Ram Expansion

Unit (REU), Among other things, the REU offers quick and easy

re-booting from basic, but not without some adjustments. Fast

re-boot is one option using the 128 configure program in GEOS;

if this option has been selected, the 128 will return to geos

when it is reset. The fastest reset back to geos will occur if a

copy of the 128 deskTop has been placed in the reu ram

'M571 drive". The GEOS environment will remain reasonably

intact, particularly if a copy of preferences is also in the RAM

drive.

The GEOS manual mentions some conditions that are required

before GEOS 128 can be successfully re-booted from BASIC.

The most critical of these conditions is that memory in RAM

Bank t from SCOOO to SC07F must remain unmodified. This

area of 128 memory is, of course^ used by basic variables and

will be quickly overwritten by strings if a BASIC program is

run.

Recognizing this fact, a program called 12S rboot has been

provided with geos 128. It provides a clean recovery from

RAM Bank 1 changes, when it performs properly. This rboot

routine restores Bank 1 at SCOOO by FETCHing the required

data from the REU. To do this, it must be relocated to an area

of common ram because it must switch to ram configuration

1 prior to restoring the dala. I relocated my version to SOQK)

by changing the load address on disk with a disk editor, and

changing one absolute address high byte from $1C to $0C. To

be safe, I always reset back to geos through 128 rboot.

The easiest way to return to GEOS after running a BASIC pro-

gram is to include the 128 rboot routine as DATA statements in

the BASIC program, READ and POKE this machine language

into memory, and SYS to the re-boot program. The necessary

DATA statements can be included as a subroutine; a SYS 3072

will execute the re-boot to GEOS.

I also generally include one more function in any BASIC pro-

gram I wish to run from the GEOS deskTop, The 1571 disk

drive is left in 1541 mode after exiting from GEOS, so I reset it

to 1571 mode. One caution: a disk should be inserted in all

drives before leaving GEOS.

AO 30000

EM 30010

FD 30020

EB 30100

BK 30110

PE 30120

HM 30130

BO 30140

KM 30150

iO 30160

rem reset geos 128 -- ml data for 128 rboot

for i=3072 to 3 1 26: read d: poke i,d: next

retum:rem sys 3072 to re-boot geos

data 120, 173, 6,213, 41, 48, 9, 71

data 141, 6,213.169.126.141. 0.255

data 173. 48,208, 41,254,141, 48,208

data 160, 8,185, 45. 12,153, 1,223

data 136, 16,247,173, 0.233, 41, 64

data 240. 249. 76, 0, 192, 145, 0. 192

dala 64.188, 0,128. 0. 0,

Easy 128 Key Fix

Rick Crone, Jackson, Tennessee
w

My 128 developed a problem with the *K* key; it would often

take two or three strokes to get it to work. Weil soon the ag-

gravation reached critical mass and a solution had to be found.

I remembered an article from the T about keyboard repair and

searched my back issues.

I found it in Volume 5, Issue 5. So I opened up the 128 and

started to follow the instructions. But the 128 had three

switches that would require unsoldering (instead of one as in

the 64 and PET). Even worse, there were wires running

through the back cover of the keyboard, and I couldn't see any

obvious way of disconnecting them. I checked the keyboard

from the top side and still couldn't see any safe way to get in-

side.

I pulled the key cap off of the *K* key and found that with the

cap off there is a hole that goes right into the contact area. 1

used a squirt of cleaner/degreaser (Radio Shack #64-2322

$1-99), put the 128 back together and now the key works

great!
+

1 thought this might save some other folks some trouble if they

have the same problem with a key. You wouldn't even have to

open the case for this repair. 1 know I sure wouldn't have put

up with the aggravation as long as I did if I had known about

this quick fix.

Never-never land 128D

John Menke, Mt, Vernon, Illinois

The C128D has a metal chassis. The Cardco?+G printer inter-

face has a power connection that plugs into the cassette port.

The connection doesn't fit very well and there's a tendency to

fiddle with it despite the exposed template on the top of the

connection.

Wrap it with insulating tape or you'll crash the 1571 drive in

the C128D. 1 assure you that sparks do indeed fly when the

connector contacts the C128D'S chassis, and the 1571 goes

completely off-line (never stops spinning, won't accept com-

mands, 'device not present').

This Bud's for you

Marc Begleiter, Forest Hills, New York

I was having trouble with Buddy- 1 28 when trying to assemble

a program with an indirect jump statement. Wei! I found out

what the trouble was! Never include comments on the same

line. What appears to be happening is the parser ignores the

semicolon and reads the comment as part of the label for the

indirect jump. Gee, that was easy. At least it wasn't my fault.

Doesn't change my opinion on the assembler though. Love

that Bud!

Tronsactof 14 July 1988: Volume 9, Issue 1

ScroUDir

n. i

+

A scrolling disk directory programfor the C-128

by M, Garamszeghy

© 1987 by M. Garamszeghy

The C-128's DIRECTORY or CATALOG command is a vast

improvement over the C-M's LOAD "$",8 type of directory.

However, it still has some very serious limitations. These in-

clude: the inability to obtain a hard copy of the directory with-

out resoning to the LOAD "S",8 method; the inability to scroll

the fist; and the cumbersome techniques required to LOAD a

program or SCRATCH a file directly from the displayed list. If

you would like to be able to do these things and more, then

this little utihty is for you.

SDIR is a memory resident extended directory utility for the

C-128 (in 40 or 80 column, FAST or SLOW mode) with a

1541, 1571 or 1581 disk drive. It provides full forward and re-

verse scrolling capabililies for a directory listing as well as the

ability to: provide a hard copy of the directory via a printer;

scratch files; load a PRG file; display or merge a SEQ file;

change 1581 directory partitions; and validate a disk, all di-

rectly from the displayed list.

Creating SDIR

SDIR is written in assembly language using the Buddy-128

system. The source code is some 1000 lines long, and is not

included in this article. For those who are interested, it is in-

cluded on the Transactor disk for this issue. Listing 1 is the

BASIC loader for the machine language program. Type this in

and SAVE il under a name other than ^^SDIR". Before RUN-

ning the program, you can make changes to the system de-

faults in lines 1 100 to 11 70 to reflect your personal set-up. The

default values correspond to a disk drive on device 8, an Ep-

son compatible printer as device 4 with a CARDCO interface

in transparent mode, and a printed directory listing three en-

tries wide.

The control character values for compressed print on/off and

expanded print on/off can be changed to suit your printer.

Consult your printer and/or interface manual for details if you

are not sure of the appropriate codes. If your printer does not

support one of these modes, use a value of 13 (carriage return)

or some other harmless value for the applicable parameters.

The printer width should be specified in multiples of 32. This

parameter divided by 32 will give the number of entries to be

printed on a single line. Any value over 64 requires either a

wide carriage printer or support for compressed prmt.

RUN the program once to create ihe SDIR machine language

program. After the program has created the file in memory,

you will be prompted to insert a disk into the device 8 disk

drive. When the file has been successfully written, you will be

asked if you want to start SDIR now. Type in "y <relum>" if

this is what you wish, or any other response to quit. Once you

have created the SDIR file, you no longer need the program in

Listing 1 (keep it anyway in case you ever wish to change the

default configuration). You can start SDIR on subsequent oc-

casions by the method outlined below,

SDIR Memory Management

The machine language portion of SDIR occupies normally un-

used BANK RAM between $1300 (decimal 4864) and

$1BE0 (decimal 7136). BANK RAM from SDOOO upwards

is used as the directory buffer $0B00 to SODFF (cassette and

RS-232 buffers) and $FA to $FF (unused zero page space) are

also used as temporary buffers and pointers for various items.

These areas are erased and set up each time SDIR is activated.

To prevent BASIC text code from over-writing the machine

language portion, the start up routine resets the top of BASIC

text limit pointer to $CFFF. This gives over 40K bytes of

memory available to BASIC for storing programs and is more

than adequate for even the longest of programs, (Remember

that on the C'l28 variables are stored in BANK 1, and do not

take up room in the BASIC work space).

Using SDIR

To start SDIR from disk, the following command is used:

BOOT "SDIR'*

assuming that the machine language program is saved under

the name of "sdir". Alternatively with the older C-128 ROM
set, SDIR can be activated from the 1541 with:

BLOAD 'SDIR" : SYS 4864

Transactor 15 July 1968: Volume 9, Issue 1

Once in memory, the machine language portion of SDIR will

remain active until a hard reset is performed on the computer.

If it becomes deactivated at any time because the function

keys get redefined or the BASIC lokenizer vector at $0304

gets re-set by another utility, SDIR can be restarted by the

command:

SYS 4864

The start up routine for SDIR does two main things: it patches

itself into the BASIC tokenizing vector and re-defines the F3

key lo point to itself rather than the normal BASIC DIREC-

TORY command. With this patch installed^ SDIR becomes a

resident command which can be accessed in direct mode only.

Of course. DIRECTORY stilt can be accessed by typing in the

command word from BASIC.

The directory hsting takes the following format:

filename type size

The type will be one of PRG, USR, REL, SEQ or CBM (1581

only). Locked ''<" and splat "*'' status are also indicated. The

file size is given in blocks. The disk name, number of blocks

free and number of files listed is also displayed. Up to 20 files

can be displayed on the screen at one time. The following

command options are possible:
"i *

• Use the <cursor up> and <cursor down> keys to scroll

through the displayed list. The currently selected file will be

highlighted in reverse video.

• The <home> key will take you back to the top of the list

The full syntax of (he command is:

SD [panemi [,U<device#>] |,P<printer#>] [,W<prinler width>]

All of the parameters are optional and can be specified in any

order. The F3 key is redefined as "SD <retum>" which works

with all defaults. The SD portion of the command line must

begin in the first column of a screen line. The optional param-

eters can be separated by spaces for legibility if desired, al-

though punctuation, etc. is not required.

The pattern can be any legal DOS pattern for directories, in-

cluding the extended set for the 1581 (only if you're using a

1581 of course). <device#> should be in the range of 8 to 13.

An error message will be generated if you try to access a non-

existent drive, <printcr#> should be 4 or 5. <prihler width> is

given in number of entires to be printed on a line. It is normal-

ly in the range of 2 to 5.

For example, just entering the command "SD" or hitting the

F3 key will list all files on the default disk drive (normally de-

vice 8) using the default printer and printer width lor output.

SD "K*=S",U9,W4,P5

will find all of the SEQ files on device 9 that begin with (he

letter K, If a printout is selected later, it will be given on the

device 5 printer at 4 entries per line.

The simplest way to use SDIR is to just put a disk into your

drive and press the F3 key - the F3 key was chosen for this

task because its default defmition in BASIC 7.0 is DIRECTO-

RY, Alternatively^ you can enter the SD command along with

its optional parameters described above.

After a few seconds, the disk directory will be printed on the

screen. If you are using an 80 column screen, a command

summary will be printed on the right hand side of the screen.

No command summary is provided on the 40 column screen

due to space considerationis. A quick summary is given in Ta-

ble I.

• The <esc> key will clear the screen and go back to BASIC.

The logo-p key combination (i.e. hold down the Commodore

logo key at the lower left comer of the keyboard and the^'p"

key simultaneously) will give a hard copy of the entire directo-

ry on a printer and return to the SDIR display. If supported by

your printer, the disk name and ID code will be printed in dou-

ble width, while the entries will be in compressed print. The

number of files found and blocks free will be printed in nor-

mal size,

I I

• The <retum> key has three functions, depending on the file

type. For PRG files, it acts like a BLOAD command and will

automatically load the highlighted file. Be careful with BASIC

programs: make sure that the graphics screen allocation state

is the same as when the program was saved, (If you BLOAD a

BASIC program that was saved when the graphics screen was

allocated, it comes from a start of BASIC address of $4000,

rather than the normal start of BASIC address of $1C00.) .

For a 1581 CBM directory partition file, <relum> will switch

the current partition to the selected file.

For other file types, <retum> will display the contents of the

file on the screen then return to the SDIR menu. This will not

affect any BASIC program thai may be in memory. Press the

<run/stop> key to abort a file display if you decide that you do

not want to view the entire file. The <no scroll> key will pause

the display momentarily until another key is pressed.

• The key combination logo-m will cause a SEQ program file

listing to be MERGEd with any BASIC program currently in

memory. A listing can be created with the simple command se-

quence:

OPEN 8.8,8;'PROGRAM.LISTS,W : CMD 8; LIST

PRINT#8: CLOSES

A SEQ program listing is also sometimes used for download-

ing files from bulletin board systems. The logo-m command

will automatically re-crunch the file into PRG formal. After

Tronsaclor 16 July 19Sa: Volume?, Issue]

the MERGE has been completed (usually by the printing of an

'?oul of data' error on the screen), you must type in CLOSE#l

to close the disk file. (The '?out of data' error is caused by the

"READY." message which is included at the end of every

Commodore BASIC listing- The computer interprets this as

READ Y. Since no DATA statements are included, you get the

*?out of data" message). Logo-m can also be used to execute a

sequential disk command file as outlined in Transactor Vol-

ume 8, Issue 2 ("SYS 65478 revisited'^ on page 33).

The key combination logo-r will return a 1581 to its root di-

rectory partition and initialize the drive. For 1541 or 1571

drives, it just initializes (he drive ("10"). For all drives, it will

also select the full directory if a pattern was originally sf>eci-

fied.

• The logo-s key combination will scratch the selected file. Be

careful when you use this, because you are not prompted to

confirm your request to delete the file! Once the file is gone, it

is gone (unless you fix the disk with a sector editor). After

deletion. SDIR will re-read the directory using the original

pattern.

The logo-v key will perform a disk validation, then re-read

the directory.

Final Observations

Unlike most programs that deal with disk files, SDIR credits

the user with a degree of intelligence. Although it has exten-

sive error detection routines, you will not be prompted or ca-

joled '*are you sure?'' each time you press a key. Because of

this, a certain amount of caution may be required, especially

when scratching files. Otherwise, SDIR is much faster for peo-

ple who are relatively careful.

Listing 1: BASIC program to create the '*SD1R" machine lan-

guage program on disk.

Table 1: SDIR Quick Command Reference

Command Action

<cursor up> Scroll up list

<cursor dn> Scroll down list

<home> Go to top of list

<esc> Exit to Basic

<retum> BLOAD PRG file

Set 1581 directory

Display SEQ file

C=m Merge SEQ file

C-p Print directory list

C-r Set 1581 rootdir

Reset dir pattern to all

C=s Scratch file

C-v Validate disk

OC 1000

CI 1010

FH 1020

FE 1030

GF 1D40

01 1050

BI 1060

CA 1070

EF 1080

GL 1090

FH 1100

OG 1110

JH 1120

FO 1130

JJ lUO

HH 1150

JG llEO

DE mo
Afi iieo

HB 1200

FA 1210

DA 1220

HG 1230

LH 1240

JO 1250

HO 1260

OJ 2000

LP 2010

GE 2020

NO 2030

LK 2040

IH 2050

IJ 2060

AJ 2070

CJ 2080

KE 2090

LK 2100

OD 2110

OF 2120

AL 2130

SK 2140

CL 2150

KA 2160

AI 2170

PG 2180

DB 2190

FF 2200

JD 2210

BK 2220

HO 2230

HP 2240

M 2250

AH 2260

DO 2270

FG 22B0

FK 2290

DP 2300

^g]]ittt***********tt«*t*t*tt**it

rem' sdir 4.0

rem* by d. garamszeghy

rem* 87-09-01

*

*

-
\

^g51*tt*********(r****t*******iHr

*--

C5=0: bank 0:

for i=4B64 to

if CS0222651

^

poke 4867,8

poke 4868,4

poke 4869,4

poke 4370,96

poke 4871,15

poke 4872,18

poke 4873,14

poke 4874,20

print "^forking ../'

7126: read x: c3=C3+x: poke iri: next

then print "error in data statements": end

T

: rem default disk drive device!

: rem default printer device* .. »

: rem default printer sec address

; rem default t printer columns per page

: rem printer code to set cciopressed print

: rem printer code to cancel compressed print

: rem printer code for ej^anded print

: rem printer code to cancel expanded print

prinf'insert disk then press a key to continue..."

getkey a5

bsave"sdir".bO;p4B64 to p7136: if ds then print dsS: end

print "-> sdir4 file created <-": bank 15

input"start sdir <y/n>";s3S

if S35="y" then sys 4864

end

data 76, 11, 19, 8, 4, 4, 96, 15

data 18, 14, 20, 162, 0; 134, 252, 32

data 221, 26, 32, 101, 19, 169, 207, 141

data 19, 18, 169, 255, 141, 18, 18, 169

data 154, 141, 4, 3, 169, 19, 141, 5

data 3, 32, 125, 255, 13, 13, 83, 89

data 78, &4, 65, 88, 58, 32, 32, 83

data 68, 32, 34, 80, 65, 84, 84, 69

data 82, 7B, 34, 44, B5, 60, 68, 69

data 86, 73, 67, 69, 35, 62, 13,

data 169, 97, 133, 250, 169, 19, 133, 251

data 169, 250, 160, 4, 162, 3, 76, 101

data 255, 13, 83, 68r 13, 32, 125, 255

data B3. 68, 73, 82, 32, 52, 46, 48

data 32, 32, 60, 67, 62, 49, 57, 56

data 55, 32, 77, 46, 32, 71, 65, S2

data 65, 77, 83, 90, 69, 71, 72, 89

0, 141,data 0, 96, 169,

data 231, 255, 162,

data 48, 58, 173,

data 7, 173, 1,

0, 255, 32

0, 76, 221, 26, 36

0, 2, 201; 83, 208

2, 201, 6B, 240, 3

data 76, 13, 67, 169, 0, 141, 0, 255

data 16B, 153, 0, 13, 200, 20B, 250, 32

data 204, 255, 32, 231, 255, 162, 0, 32

data 221, 26, 162, 3, 32, 221, 26, 32

data 101, 19, 162, 1, 32, 221, 26, 173

data 3, 19, 141, 5, 13, 173, 6, 19

data 141, 4, 13, 173, 4, 19, 141, 2

data 13, 173, 5, 19, 141, 3, 13, 160

data 0, 185, 151, 19, 153, 32, 13, 200

data 192, 3, 208, 245, 136, 140, 13, 13

Transactor 17 July 1986: Volume 9, Issue 1

PO 2310 data 160, 0, IBS, 0; 1, 208, 3, 76

lA 2320 data 131, 20, 201, 3*; 240, B6, 201, 85

IS 2330 data 240, 13, 201, 80, 240, 22, 201, 87

BH 2340 data 240, 31, 200, 203, 229, 240, 108, 32

KK 2350 data 72, 20, 208, 3, 173, 3, 19, 141

AT 2360 data 5, 13, 208. 238, 32, 72, 20, 208

II 2370 data 3, 173, 4, 19, 141, 2, 13, 208

KG 23S0 data 225, 32, 72, 20, 41, 7, 170, 189

OG 2390 data 64, 20, 141, 4, 13, 76, 18, 20

BR 2400 data 64, 64, 64, 96, 12B, 160, 192, 64

LF 2410 data 200, 185, 0, 2, 41, 15, 201, 1

BD 2420 data 208, 9, 200, 185, 0, 2, 41, 3

PF 2430 data 24, 105, 10, 96, 162, 0, 200, 185

KL 2440 data 0, 2, 141, 20, 13, 240, 10, 201

NJ 2450 data 34, 240, 6, 157, 35, 13, 232, 20S

OH 2460 data 237, 224, 0, 240, 14, 232, 138, 24

Iff 2470 data 109, 13, 13, 141, 13, 13, 173, 20

NF 2480 data 13, 203, 143, 169, 0, 141, 0, 2

HA 2490 data 169, 14, 174, 5, 13, 160, 15, 32

EP 2500 data 186, 255, 169, 0, 32, 189, 255, 32

BA 2510 data 192, 255, 144, 3, 76, 14, 27, 169

PI 2520 data 73, 141, 0, 12, 169, 48, 141, 1

EA 2530 data 12, 169, 2, 141, 10, 13, 32, 117

JC 2540 data 27, 173, 12, 13, 240, 3, 76, 138

JH 2550 data 19, 32, 87, 27, 173, 0, 12, 201

GL 2560 data 48,240, 6, 32, 14, 27, 76,138

EB 2570 data 19, 32, 194, 26, 162, 1, 32, 221

PG 25B0 data 26, 32, 125, 255, 87, 79, 82, 75

II 2590 data 73, 78, 71, 46, 46, 46, 0, 169

HE 2600 data 1, 174, 5, 13, 160, 0, 32, 186

CD 2610 data 255, 173, 13, 13, 162, 32, 160, 13

AK 2620 data 32, 189, 255, 169, 0, 170, 32, 104

DK 2630 data 255, 32,192,255, 32, 87, 27,173

FF 2640 data 0, 12, 201, 48, 208, 189, 162, 1

AR 2650 data 32, 198, 255, 160, 0, 140, 0, 13

KP 2660 data 140, 1, 13, 32,148, 27,144, 3

GJ 2670 data 76, 167, 21, 201, 34, 20fl, 244, 32

NP 2680 data 148, 27, 201, 34, 240, 249, 153, 96

EP 2690 data 13, 200, 192, 22, 208, 241, 169, 32

GG 2700 data 160, 0, 32, 159, 27, 200, 192, 32

FL 2710 data 208, 248, 32,148, 27,144, 3, 76

JO 2720 data 167, 21, 208, 246, 32, 148, 27, 32

LA 2730 data 148, 27, 144, 3, 76, 167, 21, 32

JL 2740 data 148, 27, 141, 22, 13, 32, 148, 27

AK 2750 data 174, 22, 13, 32,207, 26,160, 22

LA 2760 data 185, 234, 0, 240, 6, 32, 159, 27

IH 2770 data 200, 208, 245, 160, 0, 32, 14B, 27

ffl 2780 data 144, 3, 76,167, 21,201, 34,208

HC 2790 data 244, 32, 148, 27, 144, 3, 76, 167

IN 2800 data 21, 201, 34, 240, 244, 32, 159, 27

GK 2810 data 200, 192, 22, 208, 236, 32, 185, 27

BC 2820 data 238, 0, 13, 208, 3, 238, 1, 13

AS 2830 data 76, 46, 21, 66, 76, 79, 67, 75

BI 2840 data 83, 32, 70, 82, 69, 69, 32, 32

LI 2850 data 204, 255, 169, 1, 32, 195, 255, 160

LA 2860 data 22, 32, 172, 27, 153, 162, 13, 200

LO 2870 data 192, 32, 208, 245, 160, 0, 185, 155

{^ 2880 data 21, 153, 189, 13, 200, 192, 12, 208

CH 2890 data 245, 169, 255, 160, 0, 32, 159, 27

FG 2900 data 162, 3, 32, 221, 26, 32, 101, 19

JG 2910 data 162, 4, 32, 221, 26, 160, 0, 185

IG 2920 data 96, 13, 32, 210, 255, 200, 192, 24

HH 2930 data 208, 245, 173, 1, 13, 174, 0, 13

2940 data 32, 207, 26, 160, 0, 32, 197, 27

GP 2950 data 185, 0, 1, 240, 9, 153, 160, 13

NC 2960 data 32, 210, 255, 200, 208, 242, 160,

HJ 2970 data 185, 22, 22,240, 21, 32,210,255

GD 2980 data 153, 165, 13, 200, 208, 242, 32, 32

BP 2990 data 70, 73, 76, 69, 83, 32, 32, 32

CI 3000 data 32, 0, 168, 185, 184, 13, 32, 210

HJ 3010 data 255, 200, 192, 18, 208, 245, 162, 1

OD 3020 data 173, 0, 13, 208, 33, 173, 1, 13

10 3030 data 208, 28, 32, 221, 26, 32, 125, 255

LH 3040 data 78, 79, 32, 70, 73, 76, 69, 83

FB 3050 data 32, 70, 79, 85, 78, 68, 13,

FD 3060 data 32, 59, 27, 76, 138, 19, 232, 165

EG 3070 data 215, 208, 3, 76, 4, 24, 32, 221

PB 3080 data 26, 32, 125, 255, 176, 192, 192, 192

IK 3090 data 192, 192, 192, 192, 192, 192, 192, 192

01 3100 data 192, 192, 192, 192, 192, 192, 192, 192

KH 3110 data 192, 192, 192, 192, 192, 192, 192, 192 ;, .

DI 3120 data 192, 192, 174, 13, 221, 32, 60, 85

GJ 3130 data 80, 62, 44, 60, 68, 78, 62, 32

Jl 3140 data 45, 32, 83, 67, 82, 79, 76, 76

GJ 3150 data 32, 76, 73, 83, 84, 32, 32, 32

KE 3160 data 32, 32, 221, 13, 221, 32, 32, 32

NL 3170 data 32, 60, 72, 79, 77, 69, 62, 32

EM 31B0 data 45, 32, 84, 79, 80, 32, 79, 70

OL 3190 data 32, 76, 73, 83, 84, 32, 32, 32

CH 3200 data 32, 32,221, 13,221, 32, 32, 32

JM 3210 data 32, 32, 60, 69, 83, 67, 62, 32

GA 3220 data 45, 32, 69, 8B, 73, 84, 32, 84

NA 3230 data 79, 32, i%, 65, 83, 73, 67, 32

RJ 3240 data 32, 32, 221, 13, 221, 32, 32, 60

RC 3250 data 82, 69, 84, 85, 82, 78, 62, 32

CD 3260 data 45, 32, 66, 76, 79, 65, 68, 32

LN 3270 data 80, B2, 71, 32, 32, 32, 32, 32

CH 3280 data 32, 32,221, 13,221, 32, 32, 32

KN 3290 data 32, 32, 32, 32, 32, 32, 32, 32

PE 3300 data 45, 32, 82, 69, 65, 68, 32, 83

MB 3310 data 69, 81, 32, 32, 32, 32, 32, 32

KO 3320 data 32, 32, 221, 13, 221, 32, 32, 32

EA 3330 data 32, 32, 32, 32, 32, 32, 32, 32

OH 3340 data 45, 32, 67, 72, 65, 78, 71, 69

OH 3350 data 32, 49, 53, 56, 49, 32, 68, 73

BC 3360 data 82, 32, 221, 13, 221, 32, 32, 32 .

AF 3370 data 32, 32, 32, 67, 61, 32, 77, 32

LI 3380 data 45, 32, 77, 69, 82, 71, 69, 32

Bfl 3390 data 83, 69, Bl, 32, 32, 32, 32, 32

RD 3400 data 32, 32, 221, 13, 221, 32, 32, 32

LG 3410 data 3!, 32, 32, 67, 61, 32, 80, 32

FL 3420 data 45, 32, 80, 82, 73, 78, B4, 32

JJ 3430 data 68, 73, 82, 32, 32, 32, 32, 32

CG 3440 data 32, 32, 221, 13, 221, 32, 32, 32

fij 3450 data 32, 32, 32, 67, 61, 32, 82, 32

00 3460 data 45, 32, 49, 53, 56, 49, 32, 82

PA 3470 data 79, 79, 84, 32, 68, 73, 82, 32

Kl 3480 data 32, 32,221, 13,221, 32, 32, 32

BM 3490 data 32, 32, 32, 67, 61, 32, 83, 32

NA 3500 data 45, 32, 83, 67, 82, 65, 84, 67

HA 3510 data 72, 32, 70, 73, 76, 69, 32, 32

CL 3520 data 32, 32, 221, 13, 221, 32, 32, 32

PO 3530 data 32, 32, 32, 67, 61, 32, 86, 32

GE 3540 data 45, 32, 86, 65, 76, 73, 68, 65

LE 3550 data 84, 69, 32, 68, 73, 83, 75, 32

LC 3560 data 32, 32, 221, 13, 173, 192, 192, 192

Transactor 16 ,
July I960: Volume 9, Issue 1

. IK 3570 data 192, 192, 192, 192, 192, 192, 192, 192

CL 3580 data 192, 192, 192, 192, 192, 192, 192, 192

ML 3590 data 192, 192, 192, 192, 192, 192, 192, 192

DF 3600 data 192, 192, 189, 0, 32, 194, 26, 162

JG 3610 data 0, 142, IB, 13, 142, 6, 13, 142

GI 3620 data 7, 13, 142, fl, 13, 232, 32, 221

KE 3630 data 26, 160, 0, 32, 172, 27, 201, 255

FE 3640 data 20a, 3, 76, 64, 24, 32,210,255

OA 3650 data 200, 192, 28, 20fl, 23&, 32, 185, 27

PB 3660 data 238, IB, 13, 173, IS, 13, 201, 20

DP 3670 data 240, 6, 32, 197, 27, 76, 25, 24

BH 3680 data 32,194, 26, 32, 73, 24, 76,146

BE 3690 data 24, 169, 18, 32, 210, 255, 160,

Gfl 3700 data 174, 6, 13, 24, 32,240,255,160 '
AE 3710 data 0, 32, 172, 27, 32, 210, 255, 200

CB 3720 data 192, 31, 208, 245, 169, 146, 76, 210

IH 3730 data 255, 32, 78, 24,174, 7, 13,232

OK 3740 data 236, 0, 13, 200, 3, 76, 73, 24

EC 3750 data 142, 7, 13, 174, 6, 13, 224, 19

IL 3760 data 240, 7, 232, 142, 6, 13, 76, 140

OB 3770 data 24, 32, 197, 27, 32, 185, 27, 76

IC 3780 data 73, 24, 32, 22B, 255, 240, 251, 141

HD 3790 data 9, 13, 201, 27, 208, 3, 76, 138

IC 3800 data 19, 201, 19, 20fl, 3, 76, 4, 24

]X: 3810 data 201, 13, 208, 3, 76, 38, 25, 201

DP 3820 data 167, 208, 3, 76, 38, 25, 201, 175

GO 3B30 data 208, 3, 76, 34, 26, 201, 145, 240

JF 3940 data 36,201, 17,208, 3, 76,235, 24

KO 3B50 data 201, 174, 208, 3, 76, 38, 25, 201

HD 3S60 data 178, 208, 8, 162, 2, 142, 13, 13

MC 3B70 data 76, 159, 20, 201, 190, 208, 3, 76

GC 3880 data 143, 25, 76,146, 24, 32,241, 24

DG 3890 data 76, 146, 24, 32, 105, 24, 76, 146

m 3900 data 24, 32, 78, 24, 174, 7, 13, 202

CE 3910 data 224, 255, 208, 3, 76, 73, 24, 142

NE 3920 data 7, 13, 174, 6, 13, 240, 7, 202

BA 3930 data 142, 6, 13, 76, 24, 25, 169, 27

flA 3940 data 32, 210, 255, 169, 73, 32, 210, 255

GL 3950 data 56, 165, 252, 233, 32, 133, 252, 176

IL 3960 data 2, 198, 253, 76, 73, 24, 160, 16

BI 3970 data 32, 172, 27, 41, 127, 201, 32, 208

HF 39B0 data 3, 136, 208, 244, 200, 140, 16, 13

KK 3990 data 173, 9, 13, 201, 174, 208, 16, 160

LH 4000 data 0, 185, 137, 25, 153, 0, 12, 200

01 4010 data 192, 3, 208, 245, 76, 105, 25, 160

GL 4020 data 17, 32,172, 27,201, 67, 20B, 77

BL 4030 data 160. 0, 185, 134, 25, 153, 0, 12

CC 4040 data 200, 192, 3, 208, 245, 136, 140, 13

DI 4050 data 13, 160, 0, 32, 172, 27, 153, 3

IN 4060 data 12, 200, 204, 16, 13, 208, 244, 24

JP 4070 data 173, 16, 13, 105, 3, 141, 10, 13

CE 4flS0 data 32,117, 27, 76,201, 20, 47, 48

n 4090 data 5B, 83, 48, 58, 36, 48, 58,160

m 4100 data 0, 185, 140, 25, 153, 0, 12, 200

PM 4110 data 192, 3, 208, 245, 140, 10, 13, 32

BB 4120 data 117, 27, 76, 201, 20, 162, 0, 32

CG 4130 data 221, 26, 169, 1, 174, 5, 13, 160

LA 4140 data 3, 32, 186, 255, 173, 16, 13, 166

KD 4150 data 252, 164, 253, 32, 189, 255, 169,

HN 4160 data 170, 32, 104, 255, 160, 17, 32, 172

IG 4170 data 27, 201, 80, 208, 23, 24, 169,

LH 4180 data 32, 213, 255, 142, 16, 18, 140, 17

GE 4190 data 18, 176, 3, 76, 138, 19, 32, B7

HJ 4200 data 27, 76, 4, 24, 32, 192, 255, 162

m 4210 data 1, 32, 198, 255, 173, 9, 13, 201

HI 4220 data 167, 208, 12, 160, 17, 32, 172, 27

PO 4230 data 201, 83, 208, 3, 76, 146, 19, 32

BL 4240 data 207, 255, 32, 210, 255, 32, 225, 255

UK 4250 data 16, 5, 32, 183, 255, 240, 240, 32

BL 4260 data 204, 255, 169, 1, 32, 195, 255, 32

HF 4270 data 59, 27, 162, 0, 32, 221, 26, 76

JO 4280 data 208, 21, 169, 6, 174, 2, 13, 172

KE 4290 data 3, 13, 32, 186, 255, 169, 0, 32

BC 4300 data 189, 255, 32, 192, 255, 24, 162, 6

KA 4310 data 32, 201, 255, 144, 3, 76, 183, 26

OB 4320 data 32, 194, 26, 173, 9, 19, 32, 210

m 4330 data 255, 160, 0,185, 96, 13, 32,210

BF 4340 data 255, 200, 192, 32, 208, 245, 32, 197

KD 4350 data 27, 32, 197, 27, 173, 10, 19, 32

ED 4360 data 210, 255, 173, 7, 19, 32, 210, 255

AE 4370 data 172, 4, 13, 32, 202, 27, 32, 197

MD 4380 data 27, 160, 0, 32, 172, 27, 201, 255

HA 4390 data 240, 27, 32, 210, 255, 200, 204, 4

JG 4400 data 13, 208, 240, 32, 197, 27, 24, 165

Nl 4410 data 252, 109, 4, 13, 133, 252, 144, 225

OB 4420 data 230, 253, 76, 113, 26, 32, 197, 27

KH 4430 data 172, 4, 13, 32, 202, 27, 32, 197

LH 4440 data 27, 173, 8, 19, 32, 210, 255, 160

FE 4450 data 0, 185, 160, 13, 32, 210, 255, 200

BO 4460 data 192, 48, 208, 245, 32, 197, 27, 32

GK 4470 data 204, 255, 169, 6, 32, 195, 255, 76

HH 4480 data 4, 24, 169, 0. 133, 252, 133, 254

DM 4490 data 169, 192, 133, 253, 133, 255, 96, 133

HK 4500 data 100, 134, 101, 162, 144, 56, 32, 117

JL 4510 data 140, 32, 68, 142, 96, 189, 250, 26

AP 4520 data 133, 228, 189, 255, 26, 133, 229, 165

FO 4530 data 215, 240, 10, 189, 4, 27, 133, 230

DP 4540 data 189, 9, 27, 133, 231, 169, 147, 76

JM 4550 data 210, 255, 24, 22, 24, 24, 2,

PN 4560 data 3, 5, 24, 0, 0, 0, 45,

CB 4570 data 0, 79, 44, 79, 44, 44, 32, 204

DM 4580 data 255, 162, 1, 32, 221, 26, 32, 125

IL 4590 data 255, 13, 13, 69, 82, 82, 79, 82

HH 4600 data 58, 13, 0, 173, 11, 13, 240, 14 ,.

FP 4610 data 160, 0, 1B5, 0, 12, 32, 210, 255

GG 4620 data 200, 204, U, 13, 208, 244, 169, 64

CN 4630 data 141, 12, 13, 32, 125, 255, 13, 13

FH 4640 data 80, 82, 69, 83, ^3, 32, 65, 32

FJ 4650 data 75, 69, 89, 32, 46, 46, 46, 13

JA 4660 data 0, 32, 228, 255, 240, 251, 96, 24

GG 4670 data 162, 14, 32, 198, 255, 176, 175, 160

KB 4680 data 0, 32, 207, 255, 153, 0, 12, 201

ID 4690 data 13, 240, 3, 200, 208, 243, 140, 11

DC 4700 data 13, 32,204,255, 96,162, 14, 24

PK 4710 data 32, 201, 255, 176, 17, 160, 0, IBS

BB 4720 data 0, 12, 32, 210, 255, 200, 204, 10

LA 4730 data 13, 208, 244, 76, 204, 255, 32, 204

EM 4740 data 255, 76, 14, 27, 56, 32, 183, 255

BJ 4750 data 208, 4, 24, 32, 207, 255, 96, 162

GG 4760 data 63, 142, 0, 255, 145, 252, 162,

LK 4770 data 142, 0, 255, 96, 162, 63, 142,

GN 4790 data 255, 177, 252, 162, 0, 142, 0, 255

GC 4790 data 96, 24, 165, 252, 105, 32, 133, 252

NJ 4800 data 144, 2, 230, 253, 96, 169, 13, 76

LK 4810 data 210, 255, 169, 61, 32, 210, 255, 136

IJ 4820 data 208, 248, 96, 255, 0, 0,

Transactor !9 July 19ftS: Vofume 9, Issue 1

Multitasking on the Commodore 128
* +

' X

, f

Mysteriousforce or simple programming trick?

r

by Mike MohiJo

Multitasking is really a mysterious force that only inhabits

computers like the Amiga, or is it? Actually it is jusr a simple

programming trick that can even be done on the Commodore

128. This program will allow up to four different programs to

run at the same time provided that they don't interfere with

each other. A program doesn't have to be an IRQ routine to

run in the background. Anything that ends with an RTS or

even the monitor can be run in the background. For example,

the first demo program (MULTl.Bl) will let you have full use

of the monitor while BASIC runs a short program. Imagine us-

ing the monitor to debug a program while it is running! Have

you ever wanted the power to switch from a word processor to

a spreadsheet or to BASIC and back again without saving sev-

eral files and swapping just as many disks? For a demonstra-

tion of the idea, run MULTI.B2 and you will be able to switch

from the monitor to BASIC even if a BASIC program is run-

ning and there is no cursor.

General operation

Getting things started is fairly straightforward. The multitask-

ing program and any other programs are loaded. The initializa-

tion routine is called first. Afterwards, background tasks are

created with another set of subroutines. This simply tells the

multitasking program where it can find your programs. Pro-

grams that have been entered into the multiiasker can now be

told to run or stop wilh either a subroutine or directly from the

keyboard.

Each background task is assigned a number and a key. Task #0

(which is usually BASIC) is switched on or off by pressing

[SHJf-T|[RE:STORE]. Task #1 is switched by IC^] [restore], #2 is

switched by [alt][restORE1. Reading these keys from the

NMl routine triggered by the RESTORE key probably won't

interfere with your programs. Any combination of the four

available tasks can be toggled on or off by hitting the appro-

priate keys.

In some cases* having more than one task running at a time

would be undesirable, so an OTAT (one task at a time) mode is

included. For example, when task #2 is turned on, tasks 0, I,

and 3 are turned off and kepi out of the way. Another option

will display the status of all tasks whenever one is selected

with the restore key. The restore key routine is idiot proof and

it will prevent everything from being turned off or a non-

existent task from being turned on. [RUN/STOP] [RESTORE] is

not affected by the program.

Initialisation
^

The INIT routine at $1300 sets the IRQ and NMl vectors and

starts the multitasker. To display task status when a task is tog-

gled with the restore key, set the accumulator to 1. To allow

only one task to run at a time, set the X register to 1 , This rou-

tine can be run at any time without disturbing background

tasks.

Creating a Task
F

I L

Three routines are used to defme a background task. SETREGS

at $1303 will set the A, X, Y. and P registers of a new task.

SETPROG at $1306 sets the bank and starting address of the

program to be run. The bank value is stored in A, low byte of

start address in X, and high byte in Y, Note that the bank value

is poked directly into the MMU at $FFOO, The CREATE routine

at $1309 will create the new task by preparing a stack for it

and recording it in a task table. The task number is stored in A
and task #0 does not need to be created since it exists at the

moment you turn on the computer. SETREGS and SETPROG

must be used before CREATE and they will not affect a previ-

ously created task.

Using the runstop routine

The RUNSTOP routine at $130C can give absolute control over

a task regardless of the restrictions on the restore key routine.

It can even turn every task off (a bad idea since it crashes the

machine}. The task number is stored in Y and run/stop is

stored in X as a or a 1 , A program can get absolute priority

and run unintenupted by the multitasker if this routine is

called with the carry bit set, h will disable the multitasker but

not the normal IRQ until it is called again with the carry bit

Transactor 20 July 1986: Volume 9, Issue 1

clear. Unimportant background tasks can be slowed down by

selling a delay value greater than in the accumulator {see

MULTI.B 1 for an example).
4

'
I

Kill and load/save -

Programs that terminate with an RTS will auComalicaily return

to the KILL routine. The return address to KILL was placed on

the slack by create. Nole thai task #0 was not made with CRE-

ATE so it will not return to kill. To prevent a collision be-

tween the Kemal load, save, and other I/O. load and save are

trapped and run with the priority mode set (see RUNSTOP). This

allows ihem lo run without interference.

The IRQ routine

During an IRQ, all of the registers including the bank are

stored on the stack. After all of the IRQ work is done, all of

the registers are put back and the program that was interrupted

runs as if nothing had happened. To perform multitasking, the

IRQ sequence runs normally until the end. when registers for a

different program are put back. With each 1RQ> one program's

registers are stored and another*s are put back» causing each

program to run for a brief moment between IRQs. This hap-

pens quickly enough that all programs appear to run at the

same lime. Since the registers are stored on the stack, several

sets of them can be stored simply by switching between sever-

al stacks. The MMU chip has an interesting feature that can re-

locate the stack or zero page lo any convenient place. Switch-

ing from one program to the next is simply a matter of switch-

ing from one stack to another The newly installed IRQ routine

switches stacks and stack pointers according to a list of

available background tasks - the very same list made by the

CREATE and RUNSTOP routines. The entire process is very fast

and the background task;s are completely unaware of what

happened.

Here is a more detailed description of what happens during the

IRQ. The IRQ signal to ihc microprocessor from one of the

I/O chips starts the process every l/60th of a second. First, the

status register and a relurn address from the interrupted pro-

gram are put on the stack. The Kernal IRQ roudne is entered.

This puts the A, X, Y, and MMU configuration on the stack.

The status register is tested to see if a BRK instruction caused

the interrupt- At this point the IRQ can be trapped and made to

do as I wish. Normal housekeeping is done (scan keyboard,

update clock, etc). Now I find a new task to run and change

the stack and slack pointer acordtngly. The time delay function

to slow a program down works here too. Now that all house-

keeping and task swapping is done, it is time to put the bank,

A, X, Y, status, and return address back where they belong {the

RTl instruction docs some of this). Now the interrupted pro-

gram is back and running.

^
.

' ' ' , - '

'

Unfortunately the Commodore 128 wasn't designed to be a re-

al multitasking machine and without careful planning, use of

the Kernal I/O routines by several tasks al a time will cause

bad things to happen. Maybe someone can fix this?

Listii^ 1: muhi.Bl. This program u^es mulutaskiiig to allow a BASIC

program to nin while you use the ML monitor.

MB 10 tea *•*•* multi.bl *'•**

ML 20 ram basic on/off - shift-restore

BF 30 rem monitor on/off - logo-restore

TC 40 fast; scnclr: banklS: bload"miilti.iiil"

OH 50 sys 4964.1,0 :rem init -display tasks -on/off toggle

PI 60 sys 4B67,GpO,0,0 ; rem set a^x^y^p

GH 70 sys 4070.0,0,176 :rem set bankl5 and $bO0O

NH BO sys 4873,1 ; rem create taskil (monitor)

KH &0 sys 4876,0,1,1,0 : rem start task*!

CJ 100 playcdefgab"
JA 110 sys 4876,100,1,0,0 ^rem set delay=lO0 task#0

GR 120 play"cdefgab"

KL 130 sys 4876,0,1,0,0 irem set no delay (basic)

BC 140 goto 100

Listing 2; muki.B2. This example uses the one-iask-ai-a-iime mode to

allow switching between BASIC and the monitor.

PB 10 rem ***** miilti.b2 *****

CI 20 rem switch to basic - shift-restore

GP 30 rem ' monitor - logo-restore

IC 40 fast: scnclr: banklS: bload"multi.ml"

EJ 50 sys 4864,0,1 :rem init -no display -one task at time

PI 60 sys 4867,0,0,0,0 ;rem set a,x,y,p

Gfl 70 sys 4870,0,0,176 :rem set bankl5 and $b000

NM SO sys 4873,1 irem create taskll [monitor)

Listinf^ 3: BASIC generator program for the muhiiasking system. This

will create ihe Tile "muUi.ml" on disk.

PI 1000 rem generator for "multi.ml"

EN 1010 ndS="multi.ml": rem name of program

lA 1020 nd=529: sa=4864 : ch=57790

OG 1030 for i=l to nd; read x

IK 1040 ch=ch-x: next

ML 1050 if choO then print"data error": stop

JN 1060 prinf'data ok, now creating file": print

GZ 1070 restore

LP 1080 open 8, 8,l,"0:"+fS

GS 1090 printt8, chrS (sa/256)chr$ {sa-int (3a/256l) ;

EL 1100 for i=l to nd: read x

GN 1110 print#8,chrS(x); : next

IE 1120 close a

GG 1130 prinf'prg file "';f$;"' created..."

GP 1140 print"this generator no longer needed."

CP 1150 :

AG 1000 data 76, 89, 20, 76, 64, 20, 76. 79

PB 1010 data 20, 76, 138, 20, 76, 45, 20, 216

LB 1020 data 32, 36, 192, 144, 15, 32, 248, 245

NB 1030 data 173, 13, 220, 173, 4, 10, 74, 144

JA 1040 data 3, 32, 6, 64, 173, 9, 21, 208

DH 1050 data 54, 172, 6, 21, 186, 138, 153, 250

BE 106O data 20, 136, 192, 255, 208, 2, 160, 3

BJ 1070 data 185, 238, 20, 201, 0, 240, 242, 152

JI 1080 data 170, 254, 254, 20, 189, 254, 20, 221

HK 1090 data 2, 21, 208, 229, 169, 255, 157, 254

KD 1100 data 20, 140, 6, 21, 185, 246, 20, 141

ME 1110 data 9, 213, 185, 250, 20, 170, 154, 76

JM 1120 data 51, 255, 216, 169, 127, 141, 13, 221

EH 1130 data 172, 13, 221, 48, 20, 32, 61, 246

HM 1140 data 32, 225, 255, 208, 12, 32, 86, 224 ,

HI 1150 data 32, 9, 225, 32, 0, 192, 108,

KE 1160 data 10, 32, 213, 232, 165, 211, 41, 15

AN 1170 data 240, 213, 162, 255, 232, 24, 74, 176 ^

NE 1180 data 1, 224, 4, 208, 247, 76, 95, 19

MI 1190 data 189, 242, 20, 240, 51, 173, 7, 21

HP 1200 data 240, 19, 169, 0, 168, 153, 238, 20

GO 1210 data 200, 192, 4, 208, 248, 169, 1, 157

10 1220 data 238, 20, 76, 208, 19, 1B9, 238, 20

KO 1230 data 73, 1, 157, 238, 20, 162, 4, 202

EO 1240 data 189, 238, 20, 201, 0, 208, 9, 224

HL 1250 data 0, 208, 244, 169, 1, 157, 238, 20 '

DB 1260 data 173, 8, 21, 240, 138, 173, 9, 21

KB 1270 data 208, 133, 169, 18, 32, 210, 255, 169

Transactor 21 July 1986: Volume 9, Issue 1

CD 1280 data 255, 133, 250. 230; 250, 166, 250, 224

KP 1290 data 4, 240, 30, 189, 242, 20, 240, 243

PJ 1300 data 138, 24, 105, 48, 72, 160, 155, 189

LD 1310 data 238, 20, 240, 2, 160, 5, 152, 32

1320 data 210, 255, 104, 32, 210, 255, 76, 227

1330 data 19, 169, 146, 32, 210, 255, 169, 5

1340 data 32, 210, 255, 169, 13, 32, 210, 255

1350 data 76, 51, 255, 234, 120, 174, 6, 21

1360 data 169, 0, 157, 238, 20, 157, 242, 20

1370 data 88, 234, 76, 41, 20, 176, 13, 153

EF

DN

JB

PE

HI

PP 1380 data 2, 21, 185, 242, 20, 240,

IK

CG

KE

AI

ID

GI

OP

1390 data 153, 238, 20, 96, 142, 9,

1400 data 8, 141, 13, 21, 142, 12,

1410 data 11, 21, 104, 141, 14, 21,

1420 data 10, 21, 142, 15, 21, 140,

1430 data 96, 120, 141,

1440 data 162, 15, 160,

1450 data 21, 3, 162,

Ut 1460 data 3, 140, 25,

IN

a, 21, 142,

19, 142, 20,

98, 160, 19, 142,

3, 162, 204, 160,

4, 138

21, 96

21, 140

96, 141

16, 21

7, 21

3, 140

24

20

1470 data 142, 48, 3, 140, 49, 3, 162, 222

1480 data 160, 20, 142, 50, 3, 140, 51, 3

1490 data 88, 96, 120, 170, 169, 0, 157, 238

FB 1500 data 20, 169, 1, 157, 242, 20, 169, 246

CE 1510 data 157, 250, 20, 169, 247, 133, 250, 189

1520 data 246, 20, 133, 251, 173, 15, 21, 24

1530 data 105, 255, 141, 15, 21, 173, 16, 21

1540 data 105, 255, 141, 16, 21, 160, 0, 185

1550 data 10, 21, 145, 250, 200, 192, 7, 208

1560 data 246, 169, 27, 145, 250, 200, 169, 20

1570 data 145, 250, 88, 96, 72, 169, 1, 141

PC 1580 data 9, 21, 104,

MK 1590 data 0, 141, 9,

1600 data 1, 141, 9,

1610 data 162, D, 142,

1620 data 0, 0, 1,

K£

EB

PP

IB

SN

BI

DE

HK

IF

01

IF

HF

AE

CB

1630 data 23, 24, 0,

1640 data 255, 255, 0,

1650 data 0, 0, 0,

1660 data

32, 108, 242,

21, 104, 96,

21, 104,

9, 21.

0, 0,

0, 0,

0, 0,

0, 0,

72, 169

72, 169

78, 245

1,

1, 22

0, 255, 255

0, 0,

0, 0,

32,

96,

0,

Listing 4: PAL/Buddy-formal source code llsling for the multitasking

sysiem. When assembled, this creates the program "multi.ml".

IB 10 open 8,8,1, "G:multi. ml

DC 20 rem open8,e,l, "0:multi

PO 30 sys 700

IE 40 .opt o8

EI 50,*******••
HH 60 ; * multitasking for

JH 70 ;
' iff

BH 80 ;
* mike mohilo

HK 90 ;*•******* *

KN 100 ;

DF 110 •=S1300
PJ 120 chrout = Sffd2

EO 130 kload = $f26c

EF 140 ksave = $f54e

HC 150 jmp init

AI 160 jinp setregs

GR 170 jmp aetprog

AH 180 jntp create

CJ 190 yap mnstop
OD 200 ;

LC 210 Irq eld

OA 220 isr $c024

EP 230 bcc swap

LI 240 jar $f5£8

PL 250 Ida $dcOd

JO 260 Ida $0a04

IJ 270 Isr

GC 280 bcc awap

AD 290 jar $4006

EG 300 swap Ida prirty

AH 310 bn« rtnint

EJ 320 Idy ctask

LE 330 tax

lA 340 txa

m 350 sta stack,

y

-la"

« * * *

cl28 *

*

*

k * * t

;;kernal load/save ttiat

;;bypafl9 the jump tabl«

; a=di3p x=otat

;a=a x=x y=y p=p
;a=imnu x=pcl y=pch

; a=task

;a=delay Ji=rnst y=task# c=pri

,-,-irq routina
¥

t t

I m

r f

: ; duplicate of

; ,-kernal irq^

I r

;aee if priority task

^get current task

; store stack pointer
'\

EK 360 find dey

BK 370 cpy #$ff

HE 380 bne gtask

FB 390 Idy #503

FP 400 gtask Ida runst,y

CA 410 cinp #$00

LH 420 beq find

F6 430 tya

DI 440 tax

NN 450 inc timer,

x

m 460 Ida timer,x

CP 470 cmp delay,

X

CO 480 bne find r

HX 490 Ida #$ff

GP 500 sta timer,

X

JE 510 sty ctaak

KI 520 Ida 5page,y

HP 530 sta $d509

GP 540 Ida stack,y

BP 550 tax

HC 560 txs

FB 570 rtnint jmp Sff33

Kl 580 ;

HF 590 nmi eld

JJ 600 Ida i$7f

LK 610 sta $ddOd

HN 620 Idy $ddOd

OK 630 bmi next

ON 640 jsr $f63d

KA 650 jar $ffel

FL 660 bne next

CO 670 jar 5e056

ON 680 jsr 5el09
^

IN 690 jsr ScOOO

CH 700 jmp {50aOO)

II 710 next jar $e8d5

PO 720 Ida Sd3

NO 730 and #50f

DB 740 beq rtnint

HA 750 Idx #Sf£

F6 760 nextblt inx

IH 770 clc

FO 780 lar

AJ 790 bos rstaak

BH 800 cpx #$04

m 810 bne nextbit

HI 820 jmp rtnint

IB 830 rstask Ida crtbl,x

OK 840 beq display

JS 850 Ida otat

JJ 860 beq togtask

JI 870 Ida #500 -

PD 880 tay
DH 890 stopatk ata runat,y

EG 900 iny

DD 910 cpy l$04

EF 920 bne atopatk

JH 930 Ida «S01
PI 940 ata runst,x

JF 950 jmp display

JI 960 togtask Ida runat,x

IK 970 eor #$01

OK 980 sta runst,x

NG 990 Idx #$04

II 1000 deadlk dex

01 1010 Ida runst,x

EG 1020 cmp fl$00

ID 1030 bne display

BK 1040 cpx #$00

OK 1050 bne deadlk

LE 1060 Ida #$01

JH 1070 Sta runat,x

DB 1080 diaplay Ida dispt

HG 1090 beq rtnint

BH 1100 Ida prirty

FA 1110 bne rtnint

HE 1120 Ida #$12

,'find a nev taak

;see if it is running

;not running-look again

;task delayed-get another

; reset timer

;get new stack page

;get nev atack ptr

;kernal-retum from interrupt

nmi routine

duplicate of

kerna 1 nmi

get shift/ctrl/cmdr/alt keys

;no keys

r convert key bits to #0-3

,-no keys

;run/stop task

;task not created

;one task at a time

;not set-toggle task on/off

;stop all tasks

;run one task only

;toggle task on/off

;&ake sure at least 1 task runs

;a task is running

;look again

;all tasks stopped-run task #0

; display tasks

;no display

;do not disturb priority task

;print a rvs-on

Transactof 22 July 1986: Volume 9. Issue 1

BE 1130 jsr chxout / PA 1910 Idx #<taave

SD 1140 Ida t$ff JB 1920 Idy #>taave

BJ 1150 ata $fa EK 1930 atx $0332

EA 1160 dnext inc $fa ^display tasks 0-3 HE 1940 sty 50333 ;aet save vector

JH 1170 Idx Sfa HC 1950 cli

KD 1180 cpx #S04 EJ 1960 rta

HA 1190 beq doxit ;qo more tasks AB 1970 create sei ;create taak

HK 1200 Ida crtbl,x ;get a taak BI 1980 tax

GG 1210 beq dndxt

1220 txa

;task not created JO 1990 Ida #$00
^

IB
^ L GO 2000 sta runatrX ;don't run it yet

EE 1230 clc BA 2010 Ida #$01

HF 1240 adc #$30 ;maka iO-3 into ascii '0'..'3' EH 2020 sta crtbl,x ;Eiake it 'created'

OF 1250 pha
.

LG 2030 Ida #$f6

PB 1260 Idy »S9b ;taalt stopped-lt grey DC 2040 sta stack,

X

V

;aet the stack pti

CJ 1270 Ida ninstpx DI 2050 Ida #$f7

m 12S0 beq color FC 2060 ata $fa

DC 1290 Idy i$05 ,taak running-white PO 2O70 Ida apage^x ,
;get the atack page

C^ 1300 color tya HD 2080 ata $fb

PI 1310 jar chroot p'ptint color PP 2090 Ida rpcl ; -adjust program atart address

AL 1320 pla
1330 jar chrout

w

DH 2100 clc ;-net effect is addr=addr-l

n ;print ascii task fl OB 2110 adc #Sff ;
—

m 1340 jmp dnext ;look for another task KG 2120 sta rpcl
.

.

' —

AI 1350 dexit Ida #$92 ;priiit a rvs-off GC 2130 Ida rpch
1 '? '

'

—

HC 1360 jsr chrout - tu 2140 adc #$ff ' wr

rH 1370 Ida #$05 ;inake color white IE 2150 ata rpch f
"*

LD 13B0 jsr chrout DP 2160 Idy #$00

PG 1390 Ida iSOd ;
print a cr FD 2170 initsk Ida ntreg,y ;build a stack

PE 1400 jsr chrout

1410 jmp 5£f33

BF 2180 sta ($fa);y ;put nmiu,y,x,a,p,pcl,pcn

PN ;kernal rti FP 2190 iny ; registers on the stack

CA 1420 ;
JE 2200 cpy #$07

GH 1430 kill nop
1440 sei

;kill task NB 2210 bne initsk

JD m AM 2220 Ida »<kill p-put a return address to

CF 1450 Idx ctaak ;Hhat task is this PI 2230 ata {5fa) ,y ;kill-routine on stack

HN 1460 Ida #300 LK 2240 iny ; ,

O) 1470 sta runstrX ;atop it CN 2250 Ida #>kill ;uhen task ends vith rts it

BL 1480 sta crtbl,x ;un-create it EP 2260 ata ($fa),y ;»iill return to kill

AG 1490 cli MG 2270 cli '" .'

IN 1500 idle nop ;task will die after next irq EH 2280 rtS'

KG 1510 jmp idle IG 2290 ;

1 GG 1520 ;
CP 2300 tload pha ; trapped load

KJ 1530 runstop bca priority ; run/stop/delay taak HC 2310 Ida #$01

IC 1540 ata delay,y ;set delay timer DJ 2320 sta prirty ;get priority

AB 1550 Ida crtbi,y CK 2330 pla

HI 1560 beq notask ;task not created KG 2340 jsr kload '

GN 1570 txa KK 2350 pha

00 1530 sta runst,y ; run/stop the task LF 2360 Ida #$00
'

MM 1590 notaak rta
- FA 2370 sta prirty

FJ 1600 priority stx prirty pSet priority EN 2380 pla

GD 1610 rts CE 2390 rta
J

KM 1620 ;
GH 2400 ;

RF 1630 setrega php ;set a,x,y.p registers GG 2410 tsave pha .-trapped save

DM 1640 ata rega LJ 2420 Ida i$0l

FI 1650 stx regx BA 2430 ata prirty ,-get priority

HJ 1660 sty regy Afi 2440 pla

1OA 1670 pla Y^ 2450 jsr ksave

HC 16S0 sta regp LB 2460 Idx #$0O

GI 1690 rts FH 2470 stx prirty
,

1

KB 1700 ;
- MJ 2480 rts t

OB 1710 aetprog sta regn ;set bank, starting address AD 2490 ;
^ -

FK 1720 stx rpcl

1730 sty rpch

KP 2500 runat .byte $01, SOO. SOO, 500 ;nm/stop status
i

"'^

DK
n

PO 2510 crtbl , byte SOI. $00, $00, $00 ;created task table

It 1740 rtB EH 2520 spage . byte $01,516,517,518 ; stack page table

ME 1750 ;
CC 2530 atack , byte 500, $00, $00, $00 ; atack pointer table

FB 1760 init sei ; initialize program AK 2540 timer byte $ff,$ff,$ff,S£f ;delay timera

IN 1770 ata dispt ;di3play taak option NC 2550 delay . byte S00rSO0,$O0,$O0 rdelay valuea

BO 17B0 atx otat ;one taak at time option AJ 2560 ctask . byte $00 /current task

PL 1790 Idx #<irq

1800 Idy #>iEq

KJ 2570 otat byte 500 ;one task at time option

JM ;
FD 2580 diapt . byte $00 ; display tasks option

JC 1810 stx S0314 _ Hi* 2590 prirty . byte SOO ;priority task flag

GG 1B20 sty S0315 ;att irq vector HB 2600 ntreg = * ;new task registers

KN 1830 idx #<nmi GH 2610 regm .byte 500 ;mmu $ffOO

EO 1840 Idy i>nmi FG 2620 regy .byte $00 ^ -y

FT 1850 stx $0318 LG 2630 regx .byte $00 ;x

HG 1860 sty $0319 ;set nmi vector JB 2640 rega .byte $00 ;a

DO 1870 Idx #<tload PF 2650 regp .byte $00 -P

HO 1880 Idy #>tload
- m 2660 rpcl .byte SOO ;pcl

NB 1890 stx S0330 AN 2670 rpch .byte $00 ;pch

AC 1900 sty 50331 ;Bet load vector 00 2680 ;

Transoctof 23 July 1988: Volume 9, Issue 1

Exploring SUBMIT

Notesfrom the CP/M Plus workbench

bv Adam Herst

Copyright {cj 1988 Adam Herst

Submit is one of the most useful tools provided witti CP/M
Plus. Tl allows you to autotnate many of the repetitive tasks

that are performed on a regular basis. Almost any series of

commands that can be entered through the command line and

executed by Ihe CCP can be executed through a SUBMIT file.

The documentation provided with CP/M Plus covers the basic

operation of SUBMIT. As is often the case, the documentation

raises more questions than it answers. Unfortunately, informa-

tion about the version of submit provided with CP/M 22 is

not applicable. While their function is the same, their underly-

ing processes are different. When the documentation fails,

there is only place to go to get accurate information - your

computer!

specification follow a pattern. Submit file TEST02.SUB illus-

trates:

dir

submit test02

Note the semicolon (;) on the last line. It is required so that a

new file specification will be generated. If it (or any other ad-

ditional line(s)) is not included, submft will delete the original

temporary file (because the last command line has been

reached) before creating the temporary file for the nested sub-

mit file. Consequently, the SYSIN56.S file specification will

be reused ad infinitum.

When a submit file is executed, SUBM[T rewrites the original Execute the submit file with the command:

file to a temporary file. You can verify this with the submit

flIe,TESTOl.SUB: TEST02

dir

Execute the file with the Command:

SUBMIT TEST01.SUB

(Typing 'SUBMIT* on the command line is unnecessary. Submit

files can be executed as if they were command files by setting

your CP/M environment with the command:

setdef lorder=(com.sub)]

The command 'SUBMIT' will be omitted from examples in the

remainder of this article.)

The directory of the current user area on the current disk will

be listed to the screen. In it should be a file with a filelype of

$$$, the standard filelype for a CP/M system temporary file.

The complete file specification is SYSIN56.$$$. The signifi-

cance and origin of the number in the file specification remain

a mystery to me.

As the nested submit files are executed, directory listings are

printed to the screen. Subsequent listings contain an additional

temporary file entry. The numbers in the file specifications be-

gin at 56 and decrease by one, skipping numbers ending in 8

and 3. (The submit file can be aborted with a CTRL-C when you

grow tired of watching the screen.) ' *'Curiouser and curious-

er'* said Alice', and Fm inclined to agree.

How deeply can submit files be nested? One guess would be

to 46 levels. This would be the limit placed on the generation

of temporary file names, if the numbers in the file specifica-

tion stopped at (a logical assumpiion). TEST02-SUB can be

used to check this. This time» instead of stopping the submit

file, let it run it's course.

I-

The number in the temporary file specifications never reaches

0. When the number in the file specification has reached 16,

the next nested submit file causes the following error message

to be displayed:

CANNOT LOAD PROGRAM

When submit files are nested (a submit file is called from to be displayed. Apparently, submit files can only be nested to

within another submit file), the numbers generated for the file a maximum of 33 levels on the C-128.

Transactor 24 July 1986: Volume?, fssue 1

This limit is imposed by available memory and is a result of

the operation of SUBMIT under CP/M Plus. SUBMIT uses the

Resident System Extension^ (RSX) capabilities of CP/M Plus.

As the name implies. RSX's can be attached to the standard

operating system to handle custom tasks as system functions.

Each time submit is invoked, it attaches an RSX to process the

submit file. To attach an RSX, sufficient memory at the top of

the Transient Program Area* (TPA) must be available. When

an RSX is attached, the amount of available high memory is re-

duced. When SUBMIT has nested 33 levels, it appears that ei-

ther high memory has dropped so low that there is no room

left for SUBMIT to be loaded and executed or that there is no

room for SUBMIT to attach its RSX. This also implies that the

presence of other RSx's attached to the system will reduce the

number of levels that submit files can be nested.

The creation of a temporary file holds a number of implica-

tions for the use of SUBMIT. First, there must be enough space

on the disk to hold the temporary file. Also, the creation of a

temporary file is a factor in the execution time of SUBMIT files.

How big can a submit file be? Since a temporary file is created

from ii, it must be smaller than the remaining space on the

temporary file disk. If it isn*t, SUBMIT will abort execution and

print the message: i
-

DISK WRITE ERROR: LINE nnnn

where nnnn is the line submit was trying to write to the tem-

porary file when it ran out of space.

As long as there is space on the disk for the temporary file,

there is no apparent limit on the size of a submit file, 1 have

successfully created a submit file the full size of the ram disk,

and was able to execute il by having the temporary file written

to the 1581. That^s a 512K submit file, the largest that 1 can

test on my system, and larger than I have ever actually needed.

(The drive that is to be used for the storage of temporary files

can be designated with the command:

SET [TEMPORARy=ci:]

where d: is the drive specificationof the temporary drive,)

L

The creation of a temporary file is a factor in the execution

time of SUBMIT files. Disk access is the processing bottleneck

on theCI28;consequently, SUBMIT file execution times should

be influenced by strategic selection of tlie drive on which the

temporary file will be written. Two considerations are relevant

in choosing the location of the temporary file; the speed of the

temporary drive, and the location of the submit file.

It seems obvious that submit execution times will decrease

with increases in the speed of the temporary drive - the tempo-

rary file will be created fasten and the command lines will be

retrieved from it faster. The intluence of the location of rhe

submii file, and the effect of its interaction with drive speed, is

not as clear cut. Consider this - if the temporary file is to be

created on the same drive as the submit file, the drive will be

forced to access two separate locations on the same disk, im-

posing overhead in the form of additional drive head move-

ment, and slowing down submit file execution.

To examine the effects of the various combinations of submit

and temporary file locations, the following submit files,

TIMESUB and DUMMYSUB, can be used. They are well com-

mented and shouldn't require additional explanation. Well,

maybe 'comments* require explanation.

Comments are a feature of the ccp rather than of SUBMIT. Any

line beginning with a semicolon (;) is echoed to the screen and

not interpreted or executed by the CCP. Since SUBMIT simulates

a user entering commands at the keyboard, comment lines in a

SUBMIT file are echoed to the screen and not executed.

Create the file ti.me.sub:

time.subl/21/8S

time the effects of changing the locations

of rhe submit and temporary files

$1 is the location of the submii file

$2 is the location of the temporary file

set the temporary drive

setdef
I
temporary=$2]

; set the starting time to

mxonf date = 00:00:00

; submit the file to be timed

m:submit Sldummy.sub

; show the execution time

mxonf dale

; reset temporary drive - PLACE YOUR PREFERENCE HERE

setdef Itemporary=m:]

Create the file dUMMYSUB:
4

; dummy.sub 1/25/88

; This is a dummy submit file. It causes a temporary

; file to be written to the selected disk.

To detemiine submit file execution time, place both submit

files on a disk in each drive that is to take pan in the test. Also

make sure that the necessary support files (e.g. CONF, SUBMIT)

are located on the designated drives in accessible user areas.

Invoke the test with the command:

SUBMIT TIME <submit file drive> <temporary file drive>

where *submi(file drive' is the drive from which DUMMYSUB

will be loaded and temporary file drive' is the drive to which

Transactor 25 Juty 1986: Volume 9, Issue 1

SUBMIT is to write its temporary file. Don't forget to provide

both parameters on the command line! The Hme required to

read the submit file, write the temporary file, and then echo

the commands from the temporary file to the screen will be

shown at the bottom of tUe screen as the current date/time.

Here are the times generated on my machine:

Submit File Drive Temporary File Drive

1571 1581 1750

One digit is missing in this analysis - $0. This is documented

as a valid parameter in the DR[manual set, but no mention is

made of its function. We can find out by changing the line

with (he parameters in TEST03.SUB to read:

; $0$1$2$3$4$5$6S7$8$9

and removing the line:

type sysin56.$$$

1571 13 10 6

1581 14 9 5

1750 12 « 5

Execute the modified testo3.SUB with the command line:

TEST03 IS THE NAME OF THE SUBMIT FILE BEING EXECUTED

All limes are in seconds. Note that these are not benchmarks.

You are left to draw your own conclusions as to their final

meaning and significance for your system setup. (My tempo-

rary file drive is set to the 1750 ram disk. The location of the

submit file does not seem to be significant in that case.)

How does SUBMIT use the temporary file? One of ils purposes

is to allow the substitution of command line parameters to be

performed. Parameters are represented in submit files by a dol-

lar sign followed by a digit from one to nine ($1 - $9), When a

submit file is invoked, any arguments following the name of

the submit file are substituted for the appropriate parameter in

the submit file. Submit file TEST03.SUB makes use of comment

lines as well as illustrating parameter passing:

I2$3$4S5$6$7$8$9$10

type sysin56,SS$

I

Execute TEST03.SUB with a command line of:

TESTU3 WHAT \S THE NAME OFTHE SUBMTI FU_E BEING EXECUTED

The temporary file will be printed to the screen. The reference

to $1 in the submit file has been replaced with 'what\ refer-

ence to $2 with 'IS' and so on. The reference to parameter $10

has become 'WHATO', not the ^EXECUTED' you might have ex-

pected. Only the first digit after the dollar sign is considered

significant for parameter replacement,
^

^-

(When SUBMIT encounters a dollar sign that is not followed by

a digit, in all but one case, the error message:

I

PARAMETER ERROR IN LINE nnn

The comment line containing ihe parameters is echoed to the

screen with the appropriate substitutions. $0 has been replaced

with the name of the submit file.

Another feature of the CCP that takes on special significance in

submit files is ^Conditional Command Execution'. Programs

that run under CP/M Plus can set a 'Program Return Code'.

The CCP initializes this code to successful before a program is

run. If the program encounters an error condition, it can set the

return code to unsuccessful before it terminates. Additionally^

the CCP will set the return code to unsuccessful if the program

terminates with a fatal BDOS error or a CTRL-C. Command lines

in a submit file that begin with a colon will not be executed If

the previously executed command has set the program return

code to umuccessfuL Submit file TEST05,SUB illustrates:

L

$1 $2 $3 $4 $5 $6 $7 $8 $9
'

/

: dir \ rr'

Execute testo5.sub with various arguments designed to force

some kind of error. If the error code is set to unsuccessful, the

command on the line containing the colon will not be execut-

ed. Try anything you can think of - the conditional command

line will always execute. 1 have not found a single program or

utility* let alone a CP/M Plus command, that will set the retum

code to unsuccessful as the result of a program error.

•t

Just to make sure that conditional command execution does

work, execute TEST05,SUB with a command line of:

TEST05D1RJ: . I
'-. '

Attempting to access drive J: (a non-existeni drive on most C-

128 CP/M systems) causes a fatal BDOS error. Consequently,

the CCP sets the program return code to unsuccessful and the

conditional command line is not executed.

will be printed and execution will be aborted- Tf submit en-

counters a dollar sign followed by a dollar sign however, it

will replace the dollar sign pair with a single dollar sign. In

this way, a dollar sign may be included in a submit file for

some purpose other than parameter passing.)

ril close this look at SUBMIT with some submit files that 1 use

often. They are simple examples that show how submit can be

used to perform a variety of repetitive tasks. They also illus-

trate how characteristics of other CP/M commands can be

used to extend the capabilities of submit files.

Transactor 26 July 1966: Volume 9, Issue 1

MESSAGE

There is no formal way to cause a submit tile lo pause during

its run, shon of lerminaring it. This can be a problem when a

submit file is lo perform operations involving more than one

disk. No opportunity is given to insert the appropriate disk in

the appropriate drive. Also, there is no way to indicate that a

disk switch is necessary or which disk(s) are to be switched.

MESSAGE.SUB offers a solution lo both problems. It echoes a

message of up to nine words to the screen, then pauses the

submil tile unlil a signal from the user is received. Parameters

and comment lines are used to echo the message. A character-

istic of PU^ is used to pause execution of the submit file.

PIP can copy to and from devices as weli as files. One device

under CP/M is CON;, representing the keyboard in an input

context and the screen in an output context. When pip copies

from CON:, it waits for a predetermined signal (CTRL-Z, the

end-of-fiie character) to end the process. This effectively halts

submit file execution until the PIP operation is finished.

$1 $2 $3 $4 $5 $6 $7 $8 S9

Press CONTROL-Z to continue...

pip con:=con:

Execute messagE.sub with ihe command:
I

MESSAGE <your mes"sage>

where <your messago can contain up to nine words delimited

with spaces. The message is optional - omitting it causes only

the *Press control-Z to continue.,.' message to be displayed.

STRIP and SPACE
J

STRIP and SPACE perform two very common operations on text

files. STRIP will strip excess carriage return/linefeed combina-

tions from a named file. SPACE will double the line spacing of

a named file. The engine driving these two submit files is the

DRI context editor, ED. You may want to review the command

syntax of ED in the DRi documentation to modify these submit

files to meet your own needs.

STRIP treats as excess any carriage return/linefeed that is not

followed by another carriage return/linefeed (i.e it ends a line

rather than a paragraph). STRIP removes the excess characters

and joins the lines that had been separated. If a text file con-

sists only of excess carriage return/linefeeds, (he resultant file

will consist of a single line of text. Create the file STRIP.SUB:

; strip.sub 1/15/88

era stripped.lxt

pip stripped.txt=$l

ed stripped,tx!

<mn^L'^L'^Z-4c#s'^L'^L^Z**'^Z

<h -

<mn^L^Z-2c#s'^L^Z ^Z

<h

<mn**^Z'2c#s**'^Z^L'^L^Z

<h

<e

era stripped.bak a- -
. .* n r

.

Execute strip with the command line:

STRIP <filename> •. t

where filename is the name of the file to be stripped. STRIP

writes the stripped file to the file STRIPPEDTXT - the original

file remains unchanged. If the marker characters '**' are used

in your text file, you will want to change the marker characters

in the submit file to some unused character siring.

SPACE doubles the line spacing-of the named file, it replaces

every single carriage return/linefeed with two carriage re-

turn/linefeeds. If your text was single-spaced, SPACE will make

it double-spaced. If it was double-spaced. SPACE will make it

quadruple-spaced. Create the file SPACE.SUB:

; space. sub 1/15/88

era spaced.txt

pipspaced.txt=$l

ed spaced.txt

<mn'^L'^Z-2c#s^L'^Z^L$2'^Z

<h

<e

era spaced,bak

Execute SPACE with the command line:

SPACE <filename>

where filename is the name of the file to be spaced, space

writes the spaced file to the file SPACEDTXT - the original re-

mains unchanged.

Transactor 27 July 1968; Votumd 9, Issue 1

A Machine Language Input Routine

A routinefor all reasons

By Garry Kiziak

Tm sure ihal many of you, like myself, get a great deal of

pleasure out of writing your own programs - even when there

is a commercial program available that will accomplish the

same thing. It*s the pride and the sense of accomplishment that

we get when we complete that last line and say '^There! It's

done, and it works!" In many cases, the result is even better

than the commercial program, if only because it was designed

specifically to meet your needs and not somebody else*s.

Often, the one thing that distinguishes a commercial quality

program from one thai you create yourself is the manner in

which input is obtained from the user. Let's face it, the INPUT

statement in Commodore BASIC is not the most useful com-

mand to use. Here are some of its limitations - I'm sure you

can think of more:

L If you enter a comma or a colon, an 'extra ignored' error

message is displayed.

2. If you only want numeric data to be entered and the user en-

ters an alphabetic character, you will get a ^?redo from start'

error.

3. You can enter control characters in the middle of the input,

{e.g. Press the CLR/HOME key in the middle of an input and

watch the screen clear. Similar problems arise from the cursor

keys» the delete key. and others.)

4. The user can type as many characters as he likes, often de-

stroying the appearance of the screen that you spent many

hours designing,

5. Often you would like the user to be able to type only certain

characters (e.g. 'y' or *n'), yet he can type any character that

he wants.

We have learned how to get around many of these problems.

For example, to get around problem 2 above, simply use a

string variable to get the input and then the VAL command to

convert it to a numeric. Of course, a certain amount of error

trapping has to be done along with this to make sure that the

user doesn't enter accidentally (i.e. by entering an alphabetic

character instead). Similarly, problem 5 could be eliminated by

some error trapping.

*Bulle(-praor input subroutines

The most common way around this problem is to not use the

INPUT command at all. Instead a special 'buUet-proof input

subroutine' is written and used whenever an input command

would nomially be used. Many such routines have appeared in

magazines, user club libraries, etc. I'm sure you have your

own favourites and have probably created some yourself.

There are some problems with this approach, however.

1. Most such routines make use of the GET statement. As a

consequence a premature garbage collection can occur, result-

ing in an annoying delay in your program.

2. Usually these routines are very specific (e.g, one may only

allow alphabetic input, another may only allow numeric input,

etc.). If this is the case, you may need several such routines in

your program (one for each type of input that you require).

This can eat up a lot of memory fast,

3. If the routine is, in fact, versatile (that is, it is able to handle

many different types of input), it will likely be slow and

probably consume a lot of memory. I wrote such a routine on-

ce when I was creating a database program. The routine even-

tually took up over IK of memory but even more important it

was terribly slow, A reasonably fast typist would either lose

some of the characters typed or else have to slow down their

typing speed to adjust to the program.

F

The program in this article will offer you an alternative. U is

another 'bullet-proof input routine', but written in machine

language instead. It still is fairly long (854 bytes to be exact)

but it is stored in a place in memory that won't take away from

your BASIC programs. Because it is written in machine

language, you won't have to slow down when typing in your

Transactor 26 July 1988: Volume 9, Issue 1

j^i^ r.-i-

input. It does not force any premature garbage collection, and

is quite versatile - in fact, as you will see, it allows you to do a

lot of the things that you normally do when ediiing your basic

programs,

First> type in the assembly language program (Listing 1)-

Don't forget to save it in case you make a mistake or you want

to modify it later (some suggestions are given at the end of the

article). Assemble jl and save the resulting machine language

as "inpul.obj'*. If you don't have an assembler, type in Listing

3. This will create the input.obj file on your disk automatically.

Then type in the basic program (Listing 2), which is a short

demonstration of the capabilities of this routine.

Using the subniutine
,

Before I explain what the demo does, perhaps I should explain

the syntax of the calling siaiemeni in BASIC, which is,

sys in,x,y,in$,le,id[,bS]

'
I

I
*

The square brackets indicate that the *\bS" is optional.

I

I I

In this statement:

in is the calling address of the machine language routine. If

you assemble i! where 1 have, in=49155 (see line 30 in the ba-

sic demo).

X is the column that you want the input to begin in (0-39).

y is the row that you want the input to be on (0-24).

inS is the siring variable which will receive the input. You

must initialize inS prior to using this routine; either to a string

of blanks^ or to whatever you would consider to be the default

input. This string is printed to the screen when the input rou-

tine is entered. If it is blank, everything appears as in a normal

input statement except for the question mark. If you provide a

default input, it can be edited using the cursor keys» insert and

delete keys, etc., just as you would edit a BASIC program - the

difference being that not all keys are active, just those that you

specify.

le is the length of the input; that is, the maximum number of

characters that you want to allow the user to enter. This num-

ber must be less than or equal to the length of the string in$,

otherwise you will get an 'illegal quantity' error message. The

entire string in$ is, in fact, not printed as stated above, just the

first Me' characters.

id is the identification number. Tliis is what determines what

keys are active on input and what features are in force.

Selective input

When id=l, only alphabetic characters^ upper and lower case,

and a space are allowed. Everything else is ignored.

YOU CAN HAVE IT ALL
THE CONVENIENCE OF A CARTRIDGE!

THE FLEXIBILITY OF A DISK!

THE QUICK BROWN BOX stores up to 30 of your favorite

programs - Basic & M/L, Games & Utilities, Word Processors

& Terminals - READY TO RUN AT THE TOUCH OF A KEY
- HUNDREDS OF TIMES FASTER THAN DISK - Modify

the contents instandy. Replace obsolete programs, not your

cartridge. Use as a permanent RAM DISK, a protected work

area, an autoboot utility. C-64 or C-128 mode. Loader Utili-

ties included. Price: 16K $69 32K $99 64K $129 (Plus $3 S/H;

MA res add 5%) 30 Day Money Back Guarantee, 1 Year War-

ranty. Brown Boxes, Inc, 26 Concord Road, Bedford, MA
01730; (617) 275-0090

THE QUICK BROWN BOX - BATTERY BACKED RAM
THE ONLY CARTRIDGE YOU'LL EVER NEED

Software Inc.

i

u S0v« born mortfly &i\Q

CofnpoWs Gaxetie
Dec. 1987

exceflent, aftident program tftaf can halp you

15411571^ '

ORiVc AuGrimchi
1 541 /1 57 1 Drive Alignmenf repons Ihe alignmenl condilion ol The dish dTfve as you perform

adiiislmenra On screen help isavadablewhilelheprogiam is running Includes leal ures tor

speed adjuslmefii Compleie instruclion manual on aligning both 1541 and i57i dnves.

Even incfLides inslruclions on how io kia<3 alignment program when noihinc] eJse will huadi

Worts on the C64,SX64.Cl28ineither 64 or 128 mode. 1541, 1571 in eilher 1541 01 1571

fTxide' Aulobools io all modes Setond drive fully 3uppoiie<1. Program disk, calibfalion disK

and iPSUuciion manual only

$34.95!
^^iM.'r Super SI Utdilies is a comptele uliltlie5 package lor the 1581 disk drive and

[
Ql ^ ClZScomDLJier- Among Ihe rrtany Super 81 Ulililies lealuFesare

^^imt'* •Copy whole disks from 1&4' or 1571 Eamal Id 1581 parliEiors.

• Copy 1541 or 1571 (ilesfo 1581 ddaks

• Backup 1581 disks or files wilh 1 or 2 158 IS
• Supplied or both 3Vi and 5V diskerffts iorhal tl will toad on eilhef Ihe T571 or 1581

drive

• PerloTfTi manv CP/M and MS-DOS uthllty lufiCTions.

• Perform numerous DOS functions such as rertarr^e a disk, renan>e a file, scralch of

unscralch (ilw, lock or unlock lileSn creale aulo-bool and much more'

Super 81 LMiiiltes u3e5 an option window lo display all choii:«savBitebJe at ai^ygiv^ A

hjil leatured disk ulililies system for ihe 1581 lor only

$39.95!

RAmpoi
.-*

nHH Cll^K

RAMDOS IS a complete RAM based 'Disk" Operating Sys-

tem for the Commodore 17O0 and 1750 RAM eJipansion

modules which turns all or part of the ejtoansion memory into

a lightning fast RAM-DISK. RAMDOS behaves similar toa much faster 1 541 or

157T floppy diskexceptthatthe data IS held (nexpansion RAM and not on disk.

Under RAMDOS, a 50K program can loaded In 'h second Programs and tiles

can be Transferred to and from dish with asmgle command. RAMDOS is avail-

able for only $39.95!
Order rtirr^cnfrt^ rro^Aydrdfrr VISA MiilfrrC^rd COO
f «e ihippirtg A nandiii^ ji" US Ci^*da^fp ATO-Frtl

^de^i^t^re^Spint bonware^ inc.

LaGrinye fL 505?5

1-600- 552 -ft7T7

For Tftttir>*cai AMisiarfcce c»H [af?!^^?-^^^

Transactor 29 July 1988: Volume 9, Issue 1

When iJ=2. only the numeric characters 0-9 are alloweti. Use

this id to accept integers as input. See below for floating point

numbers.

The identification number is additive in the sense that if id=3

(i.e. 1+2), both ihe alphabetic and numeric characters are al-

lowed. Everything else is ignored.

When id=4. the period is allowed as a decimal point. This

would be used along with 2 (i.e. id=6) to allow the input of

decimal numbers. Because this is a decimal point, it can be en-

tered only once in a given input. Of course, it could be deleted

and then entered elsewhere in the same input, if the user so de-

sires.
'. - t

When id=8. cursor up and cursor down keys act just like the

return key (i.e. they terminate the input). You can tell which

key tetminated the input by peeking at location 780. If it con-

tains a I , the relum key was pressed. If it contains a 2, the cur-

sor down key was pressed, and if it contains a 3, the cursor up

key terminated the input.
4

When id=16, function one key (Fi) can be used as an escape

key. Inpul is of course terminated as if you pressed the return

key (or the cursor up/down key), but you can tell if the Fi key

was pressed by peeking at location 781. If it contains a 0, the

H key was not pressed. If it contains a l, the Fi key was

pressed.

When id=32, any trailing blanks are removed from inS.

When id=64, the default input is left justified when the inpul is

entered but right justified when the inpul routine is exiled (see

the BASIC demo for an example).

As you may have noticed, no provision has been ma<le for al-

lowing characters such as the dollar sign, the comma, etc. An
id of 128 overcomes this. When id=128. the \b$' must be in-

cluded in the calling statement and any characters stored in the

variable b$ will be allowed to be entered (e.g. if b$="+-/*" and

id- 1 28. the four arithmetic operators may be entered into the

input).

As stated above, the ideniincation number is additive. Thus if

id=51 (i.e. I-h2+16-i-32), only the upper and lower case alpha-

betic characters and the numeric digits 0-9 will be allowed.

Furthermore, Ihe FI key can be used as an escape key and any

trailing blanks that remain in the input variable will be re-

moved. Also notice ihal a space can always be inpul regardless

of the identification number.

The BASIC demo

A brief explanation of the bastc demo is now in order. Notice

first lhal there is another ML routine included with the input

routine. It is a *print at' routine. The command sys pr,x,y,aS (pr

is initialized in line 130 as well) will print the contents of a$ at

location x,y of the screen.

Line 100 simply loads the machine language routines into

memory.

Lines 130-140 initialize various variables - pr and in as indi-

cated before. The variable 'ret' is the location to be peeked to

determine if the input was terminated using the return key or

the cursor keys, while 'esc' is the location to be peeked to de-

termine if the escape key (i.e. FI) was pressed. b$, cS, and d$

are used below.

Lines 150-220 print a blank template on the screen for what

could be a database program.

Lines 230-260 initiaii/e several variables with data that will be

placed in this template to be modified by the user.

I

Lines 1000-1150 allow the user to modify the data using the

input routine. For example, the input command in line 1(XK) al-

lows the user to modify the name. An identification number of

153 is used (i.e. 1+8+16+128). Thus only the upper and lower

case alphabetic characters and the character in bS (i.e. the peri-

od) can be used. The cursor up/down keys can be used to ter-

minate input and the FI key can be used as an escape key. The

third statement in line 1000 checks to see if the escape key

was pressed. If it was, control passes to line 1160 which quits

the program. If it wasn't, line 1010 checks to see what key ter-

minated Ihe input. If ii was the return key or the cursor down

key, control is passed to line 1020, If it was the cursor up key,

control is passed to line 1 140.

ri|

'»
.r^i -.

The remaining lines behave similarly.

Run the program and notice how the cursor left/right keys

work during an input. Also notice how the delete/insert keys

work - they should be identical lo the way they work when

editing a basic program. Depending on what field you are

editing, only certain keys are permitted, the others are ignored

{see if you can predict which ones are pemiitled by looking al

the id). The cursor down key (or the return key) moves you to

the next field of data and the cursor up key moves you to the

previous field. Wraparound is in effect in both cases. You can

edit any field and move from field to field as often as you like.

Also notice how quickly you can move from field lo field

(simply hold down the cursor down or cursor up key),

'
j

When you get to the 'Amount owed:' field, notice how the in-

put jumps to the left when you begin to enter someihing and

jumps back to ihe right when you exit the field.

To quit the program, simply press the escape key in any field.

Some comments and suggestions ,*

If you analyze the assembly language routines, you will notice

that whatever the user types is stored directly into memory ex-

actly where the original data for the variable in$ is stored. It

does not create a new string- Consequently, a premature

garbage collection will not result from the use of this routine.

Transactor 30 July 1968; Volume 9, Issue 1

It also has a side effect. If you didn't make any changes to the

data when you ran the program initially^ run it again and

change the name or the address or whatever. Then quit the pro-

gram and Hst it. You will see that the data statements in lines

240-260 will have changed accordingly. This problem should

occur only rarely because the variables that you create will

normally be stored in high memory, not within the BASiC pro-

gram itself. To eliminate this problem, all you have to do is

force your variables to be stored in high memory - a statement

such as naS=na$+"" will do this.

It would be an interesting exercise to modify this program to

better suit your own needs. For example, frequently when a

default input is presented, it is not acceptable to the user. At

present, the user must type over the default and erase anything

that is left over. Modify the program so that pressing the

CLR/HOME key will blank out the default input.

Tm sure that in your programming experiences, you have en-

countered many other types of input restrictions that would be

useful in a program. Modify the program to incorporate these.

Some suggestions are:

1. Convert all lowercase characters to capitals as they are en-

tered. This would be useful when designing educational pro-

grams for use by elementary students.

2. Don't allow a space as the first character in an input or else

remove any leading spaces that are input without changing the

length of the siring (i.e. left-justify the input).

3. Terminate the input on entering the last character in the in-

put field.

4. Skip over certain characters {e.g. skip over the /'s in the date

12/24/87 or skip over the -*s in the phone number 999-999-

9999, etc.).

5. Convert the first character after a space to a capital. This is

for the lazy typist who doesn't want to use the shift key when

typing in names.

You can either remove features already in the routine and re-

place them, or you can add new ones to those already in place.

If you choose the latter, note that the variable ID in the assem-

bly language routine which is presently an eight bit 'mask'

would have to become a sixteen bit or bigger mask. This com-

plicates things a little, but the challenge should spur you on.

Some other modifications to consider are to change the flash-

ing cursor into a solid cursor or into an underline cursor, or

you may simply want to change the rate at which the cursor

flashes.

1 hope you find this a useful routine as is. I certainly have. If

you do muke any modifications, don't hesitate to send me a

copy. Fm always interested in seeing what other people can

do, especip'ly when I have given them a starting point.

Listing 1: ^'input-src" (pal format)

JL 1000

KF 1010

CE 1020

EE 1030

D 1040

JH 1050

OL lOfiO

CD 1070

CS 1080

Al 1090

CM 1100

CA 1110

GN 1120

HO 1130

RO IHO

ED 1150

GA 1160

lA 1170

PK uao

HB 1190

BG 1200

HP 1210

EB 1220

EJ 1230

EJ 1240

AK 1250

CG 1260

EI 1270

KA 12B0

PI 1290

JP 1300

CN 1310

ER 1320

CA 1330

BE 1340

U 1350

ED 1360

CO 1370

DD 1380

EO 1390

BD 1400

CE 1410

CA U20

IP 1430

GB 1440

JA 1450

CD 1460

KG 1470

0) 1480

OA 1490

CF 1500

EE 1510

FI 1520

DJ 1530

KB 1540

BO 1550

FB 1560

n 1570

BF 15&0

PP 1590

OA 1600

AH 1610

HB 1620

CN 1630

NF 1640

JP 1650

sys 700

,Opt 00
L

t

t

t

*

n/l input routine

copyright 1987

garry g. kiziak

*

It

4 * * t ****** # ****** **tl **

•=ScOOO ; origin of routine*

;

; coocand juo^ table

4

r

jD^ print ; print at routine

yap input ; input routine

;
got cursor position

•

chkcocn = Saefd ; check for a cocoa

eombyt = Sb?fl ; get a byte in x

illqty = fb24a ; illegal quantity

plot i 5fff0 ; set/read euraor position

xval .byte : teiqiorary storage

yval byte ; ten|)orary storage

^

r

getcur jsr conbyt ; get column

cpx I52B , 0<=;t<=39

bos setl ; too big

stx yval

txa

pha I

jsr coiiibyt

cpif fSl9 ;

bcs setl ;

stx xval

pla

tay

clc

im plot ;

; get row

0<=y<=24

too big

set cursor

setl]P^ illqty

; print at routine

4

r

print jsr getcur

jsr chlicom

jn^ $aaa4 ; continue with ron print

F

; wait fo£ a keystroke

h

r

qetin = $ffe4 ; check for a keypress

beg - Sfb ; beginning of input field

curpos = 5fd ; cursor position within input field

getl^ey Ida ir ; get character under cursor

eor t$SO ; reverse it

sta ir

Idy curpos ; get cursor position

sta (beg},y

Ida j|$10 ; initialize counter

sta count?

Ida tSff

sta count

1

getl jsr getin ; has a key been pressed

bna qet2 ; yes

Transactof 31 July 1986: Volume 9, ls«ue 1

___^__L^ V

HL IGEO

HC 1670

ED IGBO

AH 1S90

Iff 1700

IH 1710

KK 1720

U 1730

CI 1740

EB 1750

OT 1760

JH 1770

BV \m
00 1790

AI IBGO

PF I&IO

BD 1B20

BF 1530

Ffl 1B40

AB 1B50

PL leeo

Of 1670

CH leso

DE 1890

HK 1900

PE 1910

SP 1920

BA 1930

IG 1940

FO 1950

CF 1960

BH 1970

HN 19SQ

EE 1990

FE

IK 2010

GG 2020

LD 2030

PH 2040

OH 2050

m 2060

DP 2070

L£ 2080

OF 2090

FE 2100

CP 2110

ME 212C

BJ 2130

Hf 2140

JJ 2150

X 2160

AB 2170

AD 21B0

BG 2190

DG 2200

CG 2210

EC 2220

N! 2230

LE 22^0

AE 2250

JK 22S0

JJ 2270

QG 2280

JM 2290

IE 2300

KD 2310

LF 2320

LP 2330

dec countl ; cQunt doim

bne getl ; try again

dec CDunt2 ; count down soiw mn
bne get! : try again

beq getltey ; flash cursor

get2 rta

countl .byte ; counter for flashing cursor

count2 .byts

; input routine

len = $02 ; max. no. of characters alloved

ast - S03 ; address cf input string

lenb = $b2 ; length of optional string

bst = $b3 ; address of optional string

varadr ? j05 : address of variable

findvar = ^bOSb ; find variable

justf .byte ; justify flag

escflg .byte ; escape flag

iq ,byte : character being entered

ir .byte ; character under cursor

id ,byte ; nasJi for allowable inpputs

r

input Ida tSOO

sta justf ; no justfication

jsr getcur ; get cursor position

clc

Ida Sdl ; get screen address

adc $d3 ; for beginning of input

sta beg

Ida $d2

adc tSOO

sta beg+1

jsr chkcoo

jsr findvar

sta varadr
.

sty varadr*!

Idy 1^02 : move its descriptor

inpl Ida (varadr}, y : to zero page

sta len,y

dey

bpl inpl

Ida len

beg setl

jsr conbyt ;
get max length of input

txa

beq setl

cpx len ; bigger than length of string ,

beq inpla

bcc inpla

bcs setl ; yes, too big

inpla stx len

jsr combyt ; get id

stJE id

txa ; set status registers

hpl inplc ; no optional string

jsr chkcoffl

jsr findvar
; find optional string

Idy IS02

inplb Ida (5^7], y : get descriptor for string

sta lenb.y

dey -

bpl inplb

inplc jsr priast ; print default input

inpld Ida »S00

sta Sc6 ; clear)^eyboard buffer

sta curpos ; initial position of cursor

sta escflg ; escape flag =

: find input variable

save its location

BE 2340

AH 2350

LL 2360

OE 2370

JF 2360

DI 2390

m 2400

BJ 2410

NK 2420

CL 2430

FI 2440

FO 2450

PA 2460

PG 2470

IP 2480

CG 2490

NA 2500

PE 2510

IB 2520

LL 2530

LB 2540

LA 2550

HP 2560

DG 2570

EK 2580

IC 2590

DL 2600

HE 2610

FH 2620

GE 2630

OB 2640

DN 2650

CB 2&6D

NL 2670

ID 2&ao

BB 2690

JL 2700

CJ 2710

OG 2720

HC 2730

FP 2740

AN 2750

OD 2760

EC 2770

KO 27S0

PA 2790

LD 2800

JI 2810

JO 2820

BG 2630

BO 2B40

HZ 2B50

EI 2360

KE 2870

KI 2BB0

JN 2B90

ED 2900

LP 2910

BJ 2920

NC 2930

PH 2940

PE 2950

OF 2960

JO 2970

KP 29B0

OF 2990

NN 3000

CH 3010

check id

not alloved

inp2 Idy curpos

Ida (beg)jy ; get character under the cursor

sta iq ; save it

sta ir ; temporarily

inp3 jsr getltey , get a Iteypress

sta $d7 ; save it t^orarily

cup tl33 ; [fl]

bne inp4

Ida id

and 116

beq inp3

Ida iq

Idy curpos ; restore character under cursor

sta (beg)ry

Idx ISl ; set escape fig

stK escflg

jnp return

inp4 CD? 132 ; [space]

beq inp5

cmp 1160 ; [shifted- space]

bne iDp6

inp5 Ida 132 ; convert to a nomal space

sta 5d7

jn^i gotit

inp6 cEDp i4B ; [0]

bcc inp7

[9]+l

-J,
J

bcs inp7

Ida id

and 12 ; check id

beq inpl2 ; not allowed

jr^ gotit ; [0-9]

inp7 aa^ 165 ; [a]

bcc inpaa

arp 191 ; [zl+l

bcs inp8a

inpB Ida id

and 11 , checlt id

beq inpl2 ; not alloved

JD^ gotit ; [a-z] or [shift a-shift z

inpBa cmp »193 ; [shift a)

bcc inp9

01^ »219 ; [shift z]+l

bcs inp9

bcc inpS

inp9 cap #157 ; [cursor left]

bne inplO

Idy curpos

beq inp3 ; can't cursor left

Ida iq

sta {beglj

dec curpos

jmp inp2

inplO cap j[29 ; [cursor right]

bne inpU

Idy curpos

iny

cpy len

beq inp3 ; can't cursor right

dey

Ida iq

sta {beglj

jsr check

inc curpos

imp inp2 .

inpU cmp H3 ; [return]

beq return

cap tl7 ; [cursor down]

I -

Transactor 32 July 1986: Volume 9, Issue 1

1

1

^^ 3020 beq dovn FB 3700 cpy curpos

M3 3030 <3Bp 1145 ; [cursor ^] EB 3710 beq cant

K 3040 beq up FG 3720 Ida [ast),y

MB 3050 cnp *14a ; [inaert] IJ 3730 cotp 132 ; is last character a space

EH 3060 beq insert ON 3740 bne cant ; can't insert

CJ 3070aipM6 ; [-1 KF 3750 in si dey

NA 30 SO b«q deciisal KO 3760 Ida [beg),y ; get screen code

DJ 3090 cup (20 ; deletft] EH 3770 pha ; save it

JG 3100 bne inpl2 LK 3780 Ida ast),y

LF 3110)d? delete OR '3790 iny

NB 3120 iiipl2 bit id ; special characters allowed lA 3800 sta (a3t},y ; Dove character in string

LO 3130 bpl done ; no KG 3810 pla

91 3140 Idy ISOO, DL 3820 sta beg),y ; nave character on screen

BA 3150 Ida $d7 BL 3830 dey

KF 31(0 inpl3 c^ (bst),y ; y«s BK 3840 cpy curpos

BL 3170 bne iiipl4 OC 3850 bne in&l

FM 31fl0 jiq) gotit U 3860 Ida t32

ED 3190 inpU iny TD 3870 sta (ast},y ; put space in string

BE 3200 cpy lenb LD 3880 Idat $c7

m 3210 bne inpl3 PG 3890 beq ins2

JF 3220 done jnp iiip3 ; no other Iteys allowed FA 3900 era t$eO

LO 3230 up ld3t t$03 BO 3910 ins? sta (begi^y ; put space on screen

DI 3240 byte S2c IK 3920 jmp inp2 ,

IF 3250 dovn Idj; t$02 FK 3930 delete Idy curpos

FP 3260 Ida id MF 3940 bne dell

HG 3270 and |fl CJ 3950 iny ; cursor in first position

HJ 3280 beq done Kl 3960 cpy len , only one character

FL 3290 byte $2c BA 3970 bne cant ; no, so can't delete

PO 3300 return Idjt #$01 JA 3980 dey : yes, so put a space

EC 3310 Ida id BO 3990 Ida 132 ; in the first position

U4 3320 and »64 JG 4000 sta EbegJ,y

FD 3330 beq retl PH 4010 sta (ast},y

Afi 3340]sr iuatr MA 4020 jBTp inp2

JJ 3350 rati Idy curpos JM 4030 dell Ida iq

DE 3360 Ida iq BJ 4040 sta (beg),y

DP 3370 sta (beg),y KP 4050 iny ; is cursor on last character

NG 3380 Ida id JH 4060 cpy len

BF 3390 and #32 ; check for removing trailing apace* GK
J

4070 bne del? ; no

LE 3^00 beq reti ; no
' • DL 40B0 dey ; yes - -

m 3410 Idy len BK 4090 Ida (ast),y ; get last character

RB 3420 dey OH 4100 oi^ #32 ; is it a space

NF 3430 ret? Ida (ast),y ; gat character froa a$ HC 4110 beq del2 ; yes

KO 3440 cptp #32 ; is it a space LC 4120 inc curpos , no

AK 3450 bne ret3 KG 4130 del2 Idy curpos

PD 3460 dey HO 4140 dey

CH 3470 ^1 ret? CA 4150 Ida (ast),y ; get character to delete

OG 3460 ret3 iny KH 4160 del3 iny

JF 3490 tya flO 4170 cpy len

PC 3500 Idy SSOO BH 4180 beq del5

VB 3510 sta (varadr],y GI 4190 Ida (aat),y ; character to replace

HH 3520 ret4 txa ; type of return in location 780 EO 4200 pha , -

GE 3530 pha NP 4210 Ida {beg),y

HH 3540 jsr priasl
'

HD 4220 dey

GG 3550 pla JJ 4230 Idx Sc7
^

KO 3560 Idx eacflg ; get escape flag JK 4240 beq del4

ON 3570 rta NG 4250 ora fSBO

ER 3580 decimal Ida id ; check id GJ 4260 dal4 sta [beg],y ; delete it on screen

flJ 3S90 artd 14 GD 4270 pla

m 3600 beq inpl2 ; not allowed ' ID 4280 sta (ast),y ; delete it in string

LL 3GI0 jar checicd , chick for decimal point CK 4290 iny

CJ 3620 beq cant ; decimal point already entered MM 4300 bne del3

ai 3630 jpqi gotit WE 4310 dels dey

JG 3640 cant jnqj inp3 EG 4320 Ida #32

GP 3650 insert Idy curpoa PA 4330 sta (ast},y

PJ 3660 Ida iq EA 4340 Idx Sc7

PB 3670 sta (beg)ry FB 4350 beq del6

LO 36B0 Idy len LN 4360 ora #580

PC 3690 dey IJ 4370 del6 sta (beg),y

Transactor 33 July 1968: Volume 9, Issue 1

GE 43 BO dec curpofi

OE 4390 jp^ irtp2

lA 4400 qotit jsr ched

JN 4410 Idy curpos

HP 44Z0 Ida 5d7

BO im ata (ast)ry ;
put it in string .

'

DP J440 bmi got3 j

H4 4450 aap l$60

Ul 44fi0 bcc got!

NJ 4470 and ISd£

U 44B0 bne got2 .
'

.

DF 4490 gotl and l$3f

HE 4500 got2 ^ got5

PH 4510 got3 and UU
NH 4520 asp t$7f

DE 4530 bne got4

CE 4540 Ida t&5e

HO 4550 gQt4 ora »S40

DF JSfiO gotS Idx Sc7

Gl 45TQ beg got6

HL 4580 ora t$80

JN 4590 got6 sta (beg],]f

IN 4600 iny

PJ 4610 cpy len

SK 4620 bne got7

BH 4630 dey

EH 4640 got? sty curpos

CI 4650 ji^ inp2

¥1 4W0 ;

m 4670 ; uatify left

01 4680 ;

JA 4690 tenpn .byte

FB 4700 tenpn ,hyte

m 4710 ;

K 4720 iustl Idy tSOO

CN 4730 3ty tenpa

LG 4740 Ida (aat),y

KF 4750 cup *32

NG 4760 bne]w5 ; already justified

CJ 4770 jusl iny

JE 47B0 cpy len

HI 4790 beg jusS ; all spaces

BE 480G Ida (astj^y

GJ 4810 orp #32

>S 4820 beg jusl

HF 4830 3ty tenpn ; first non-space character

CB 4B40]us2 Idy tenpn ; move left

HB 4B50 sta last)

J

AN 4B60 inc teiq^n

AO 4B70 inc tempm

LC 4830 Idy ten^n

EL 4890 cpy len

EE 4900 beq jus3

FB 4910 Ida (ast),y

PG 4920 bne jus2

01 4930 beq iijs2

DK 4940 jus3 Idy tenpi ; rest are spaces

NN 4950 Ida «32

IJ 4960 jus4 sta (ast),y

KE 4970 iny

Bfi 49B0 cpy len

EJ 4990 bcc ius4

II 5000]ijs5 rts

lA 5010 ;

^ 5020 ; justify right

HB 5030 ;

KF 5040 justr idy len

FH 5050 dey

l^

KB 5060 sty teopi

FL 5070 Ida ast),y

EK SOeO CD? 132

ED 5090 bne justS ; already justified

KL 5100 justl dey

HA 5110 tffii justs ; all spaces

ao S120 Ida (astlj

GH 5130 anp 132

JB 5140 beq justl

iJ 5150 sty tempn ; first non-space chaia

BE 5160 just2 Idy tenpi

HF 5170 sta (ast),y

BE 5180 dec teotpca

HE 5190 dec ten^

LG 5200 Idy tenpn

JT 5210 tani just3

LS 5220 Ida {ast),y

PF 5230 bne justS

OH 5240 beq just2

IN 5250 justs Idy teapm ; rest are spaces

DB 5260 Ida #32
, ^,

IK S270 ju8t4 ata (ast),y

LF 5280 dey

PL 5290 bpl just4

KO 5300 justs rts

ED 5310 ;

HK 5320 ; print string

IE 5330 ;

cc 5340 priast Ida 5d7

CG 5350 pha

LJ 5350 Idy yvai

AK 5370 Idx ml
KB 53S0 clc

lA 5390 jsr plot

LJ 5400 My (500

EF 5410 pril Ida (ast);y

FH 5420 jsc ;ffd2

GB 5430 iny

NN 5440 c^y len

PF 5450 bne pril

HN 5460 pU
FF 5470 sta Sd7

EF 5480 rts

10 5490 ;

GO 5500 ; check justify flag

HE 5510 ;

IN 5520 check bit justf

ON 5530 bmi cbl ; already on

NN 5540 Ida id

BI 5550 and 164

LL 5560 beq chl : not allowed

04 5570 jsr]ustl ; justify string and

FH 5580 jsr priast ; print it

OH 5590 ida IS80 ; set flag

JA 5600 sta justf

PP 5610 chl rts

KG 5620 ;

LH 5630 ; checic fcr decinial

OE 5640 ;

IJ 5650 checfcd Idy len

EN 5660 dey

FP 5670 checkl Ida (ast),y

KA 56fl0 cnp 146

FA 5690 beq checlt2 ; found one

PP 5700 dey

HE 5710 bpl checkl

EO 5720 Ida SSOl ; no deciioal point

FI 5730 check2 rts

I
^

Transactor 34 July 1988; Volume 9, Issue 1

Listing 2;^input demo" JH 1180 data 248, 32, 18r 195, 169. , 133, 198, 133, 253

AB 1190 data 141, 91, 192, 164, 253, 177
, 251, 141, 92, 192

CA 1200 data 141, 93, 192, 32, 48, 192 , 133, 215, 201, 133
CE 100 if a=0 then a=l; load "input. ob]"J,l

U 110 print "(clr (greenlfU Eight)IHPDT DEM:)"

EH 120 poke 53281,0: poke 53260,0: polte 53272,23

1

AH 1210 data 208,

JC 1220 data 92,

1

22,

192,

' r

173,

164,

r

94,

253,

1

192,

145,

41

251

r ^ r

, 16,

, 162,

^
1

240,

1,

'
1

240,

112,

173

91

CG 130 pE=49152: in=49155: ret:^7B0: esc=181
FP 1230 data 192, 76, 146, 193, 201, 32 , 240, 4, 201, 160

lA HO b$=".": cS^"-": ^='T DH 1240 data 20B, 7, 169, 32, 133, 215
, 76, 100, 194, 201

1 r "1
HN 150 sys pErl^i-Bame:" DO 1250 data 48, 141, 14, 201, 58, 176

, 10, 173, 94, 192

BP 160 sys pr^l^e/'Addiesa:' BL 1260 data 41, 2, 240, 101, 76, 100 , 194, 201, 65, 144

JC no sys pr, 1,8, "City:" OG 1270 data 14, 201, 91, 176, 10, 173
, 94, 192, 41, 1

JJ lao sys prr23,8,"Phone:'' PH 1280 data 240, 83, 76, 100, 194, 201
,

193, 144, 6, 201

OG 190 iys pr.lflO, "Anotint Owed: frvs}fcyan){10 spaces}(rvs off} - Dues" D 1290 data 219, 176, 2, 144, 236, 201 , 157, 208, 14, 164

OJ 200 sys pr,Hrll,"frva}{10 spaces}frvs off) - Diska FG 130O data 253, 2«, 156, 173, 92, 192 , 145, 251, 198, 253

HE 210 sys pr,H,12, "(rvs}{10 spaces}(rvs off) - Magazines NJ 1310 data 76, 193, 192, 201, 29, 208 , 21, 1S4, 253, 200

FD 220 ays pr,H,13,"("d}{rvaM10 speces}frvs off] - Total FF 1320 data 196, 2, 240, 135, 136, 173 , 92, 192, 145, 251
BG 230 read naS,adS,ciS,phSrduS,diS,MS,tlS

r

JF 1330 data 32,

r

47, 195, 230, 253, 76

' F

r
193,

r

192,

r

. 201, 13
JP 240 data "Garry KizialtO spaces) "/'23S1 Dmcaster DrivefS spaces}"

^ r

AA 1340 data 240, 60,

p

201, 17, 240, 46

^ ^ F

r
201, 145, 240, 39

IE 250 data "Burlington {5 spaces}"/"335-4B37"
_

LI 1350 data 201,

^ ^ r

148, 240, 120, 201,. 46

r ^ ^ ^
1

r
240, 98, 201,. 20

BO 260 data "(5 spaces}S0.00\"f5 space3}S3,50",

"{4 spaces}S12.00\"{4 spaces]S15. 50"

AT 1000 print "Eyello*f)":sys in,7,4,raS,20,153,b5;if pee^iesc) then 1160

JF 1360 data 208,

JB 1370 data 160,

3,

0,

76,

165,

14,

215,

194,

209,

44

179

r
fc if

J

, 94,

, 208,

^ ^ ^

192,

3,

16,

. 76,

16

. 100

flj 1010 onpeekiret} goto 1020,1020,1130 JI 1380 data 194, 200, 196, 178, 208, 244 , 76, 203, 192, 162

KJ 1020 print "{yellow}":3ys inrl0,6,ad5,25,155rbS:if peelt[esc) then 1160 PD 1390 data 3, », 162, 2, 113,. 94
r

192, 41, 8, 240

HK 1030 onpeekiret} goto 1040,1040,1000 HK 1400 data 241, a. 162, 1, 173,' 94.
r

192, 41, 64, 240

Ml 1040 print "{yellowr':sys in,7,3,ciS,15,153,bS:if peelt(eac) then 1160 JH 1410 data 3, 32, 217, 194, 164, 253
r

173, 92, 192, 145

OM 1050 on peek{ret) goto 1060,1060,1020 OK 1420 data 251, 173, 94, 192, 41, 32 , 240, 18, 164, 2

OJ 1060 print "{yellowl^sys in,30,8,pliSJ,154jCS:if peek{esc} then 1160 GJ 1430 data 136, 177, 3, 201, 32, 208 r 3, 136, 16, 247

AP 1070 on peek{ret) goto 1080,1080,1040 CF 1440 data 200, 152, 160, 0, 145, 5,, 138, 72, 32, IB

DN lO&O print "{cyan}{rv3l"; :sy5 in,14,10,duS,10,222,dS:if peelt esc} then 1160 BO 1450 data 195, 104, 174, SI. 192, 96 , 173, 94, 192, 41

HO 1090 on peek(ret) goto 1100,1100,1060 JA 1460 data 4, 240, 158, 32, 71, 195 , 240, 3, 76, 100

IL 1100 print "fcyan}{rvaf"::sys in,14,ll,diS,10,222,dS:if peek esc) then 1160
1

AD 1470 data 194,

1

76,

r

203,

r

192,

r

164, 253 , 173,

F

92,

r

192, 145

JA 1110 on peekiret) goto 1120,1120,1030
FL 1480 data 251, 164,

1

2,

r

136,

r

196, 253

r

, 240,

r

239,

r

177, 3

IH 1120 print "{cyan}{rvs} ";:sys in,14,12,ina5,10.222|dS;if peek[esc} then 1160
FB 1490 data 201,

™ ^ r

32,

^ r

208,

" " ^ r

233,

" " " F

136, 177 , 251,

^ " ^ r

72*

" ' ' r

177, 3
IB 1130 on peek(ret) goto 1140,1140,1100

G 1140 print '{red}{rvs}";:sys in,14,13,tiS,10,222,dS:if peek{esc) then 1160

FB 1150 on peek(ret) goto 1000,1000,1120

KJ 1500 data 200,

DH 1510 data 239,

^ ^^
1

145,

169,

3,

32,

104,

145,

145,

3,

251

166

, 136,

, 199,

™ p

196,

240,

" ' r

253,

2,

208

9

BH 1160 sys pr,4,20,"(rvs off}(»*hite}That's all there is to it!!!"
PS 1520 data 12B, 145, 251, 76, 193, 192 , 161, 253, 2oe, 15

V 4

ND 1530 data 200, 196, 2, 208, 192, 136
, 169, 32, 145, 251

FB 1540 data 145, 3r 76, 193, 192, 173 . 92, 192, 145, 251

L IF 1550 data 200, 196, 2, 208, 9, 136
, 177, 3, 201, 32

Lishng 3: input.obj maker
114 1560 data 240, 2, 230, 253, 164, 253 , 136,

1

177,

1

3, 2O0

lA 1570 data 196, 2, 240, 20, 177, 3 . 72, 177, 251, 136

AE 10 Open 15,8,15, 'sO:input.obi'' m 15S0 data 166, 199, 240, 2, 9, 128 , 145, 251, 104, 145

FN 20 open l,g,l,"0:input.obj^' CH 1590 data 3, 200, 208, 231, 136, 169 . 32, 145, 3, 166
^

FO 30 printtl,chr5iO};chiS(192); KF 1600 data 199, 240, 2, 9, 128, 145 , 251, 198, 253, 76

EP 40 for i=0 to 853 EG 1610 data 193, 192, 32, 47, 195, 164 , 253, 165, 215, 145

IE 50 read X OF 1620 data 3, 48, 13, 201, 96, 144 . 4, 41, 223, 208

NK 60 print|l,chrS{x); £H 1630 data 2, 41, 63, 76, 134, 194 . 41, 127, 201, 127

FC 70 next i
4

IH 1640 data 208, 2- 169, 94, 9, 64 . 166, 199, 240, 2

DC 80 close 1 KD 1650 data 9, 128, 145, 251, 200, 196 . 2, 208, Ir 136

BA 90 close 15 U 1660 data 132, 253, 76, 193, 192, . 0, 160, 0, 140

EG 100 end LI 1670 data 153, 194, 177, 3, 201, 32 . 208, 50, 200, 196

DP 1000 data 76, 39, 192, 76, 95, 192, 0, 0, 32, 241 JO 1680 data 2, 240, 45, 177, 3, 201 . 32, 240, 245, 140

FO 1010 data 183, 224, 40, 176, 21, 142, 7, 192, 138, 72 DN 1690 data 154, 194, 172, 153, 194, 145 . 3, 238, 154, 194

EC 1020 data 32, 241, 183, 224, 25, 176, 9, 142, 6, 192 LN 1700 data 238, 153, 194, 172, 154, 194 , 196, 2, 240, 6

RO 1030 data 104, 168, 24, 76, 240, 255, 76, 72, 179, 32 BI 1710 data 177, 3, 208, 234, 240, 232 . 172, 153, 194, 169

JA 1040 data 8, 192, 32, 253, 174, 76, 164, 170. 173, 93 HP 1720 data 32, 145, 3, 200, 196, 2 , 144, 249, 96, 164

JD 1050 data 192, 73. 128, 141, 93, 192, 164, 253, US. 251 CG 1730 data 2, 136, 140, 153, 194, 177
. 3, 201, 32, 209

LK 1060 data 169, 16, 141, S9, 192, 169, 255, 141, 88, 192 BN 1740 data 44, 136, 48, 41, 177, 3 . 201, 32, 240, 247

U 1070 data 32, 228, 255, 208, 12, 206, 88, 192, 208, 246 HP 1750 data 140, 154, 194, 172, 153, 194 . 145, 3, 206, 153

CJ 1080 data 206, 89, 192, 208, 241, 240. 217, 96, 0, DL 1760 data 194, 206, 154, 194, 172, 154 , 194, 48, 6, 177

AP 1090 data 0, 0, 0, 0, 0, 169, 0, 141, 90, 192 CB 1770 data 3, 208, 236, 240, 234, 172 , 153, 194, 169, 32

PC 1100 data 32, 8, 192, 24, 165, 209, 101, 2U, 133, 251 JH 1780 data 145, 3, 136, 16, 251, 96 . 165, 215, 72, 172

PP 1110 data l&5r 210, 105, 0, 133, 252, 32, 253, 174, 32 HO 1790 data 7, 192, 174, 6, 192, 24 . 32, 240, 255, 160

JF 1120 data 139, 176, 133, 5, 132, 6, 160, 2, 177, 5 BI 1800 data 0, 177, 3, 32, 210, 255 . 200, 196, 2, 208

JO 1130 data 153, 2, 0, 136, 16, 248, 165, 2, 240, 152 £P 1810 data 246, 104, 133, 215, 96, 44 . 90, 192, 48, 18

HI 1140 data 32, 241, lfl3, 138, 240, 146, 228, 2, 240, 4 JC 1820 data 173, 94, 192, 41, 64, 240
. 11, 32, 155, 194

LE 1150 data 144, 2, 176, 138, 134, 2. 32, 241, 1B3, 142 JB 1B30 data 32, 18, 195, 169, 128, 141 , 90, 192, 96, 164

EH 1160 data 94, 192, 138, 16, 16, 32, 253, 174, 32, 139 OB 1840 data 2, 136, 177, 3, 201, 46 , 240, 5, 136, 16

AK 1170 data 176, 160, 2, 177, 71, 153, 178, 0, 136, 16 JB 1850 data 247, 169, 1, 9E

Transactor 35 July 1^?d8: Volume 9, Issue 1

by Jim Frost

One Transactor every Iwo months is not nearly enough for a

confirmed ML addict like me, so I eventually bought a com-

plete set of back issues. Between projects, if my wife isn't in-

sisting 1 mow the lawn or fix the leaking faucets, the entire

TrausacU>r collection is reread for new programming ideas. A
machine language version of Chris Zamara's Sprite Rotate

{Transactor. Volume 5 Issue I) seemed a suitable challenge so

I decided to give it a try. The project took over a year of study,

trial, and (mostly) error prior to successful completion. Along

the way I learned to use ROM trig routines, unravelled the

mysteries of floating point math and mastered some of the

complexities of graphic rotation.

Using the Rotate Routine

The Rotate program included with this article will spin a com-

plete sprite in under a second, fast enough to allow use from

BASIC. Use the syntax SYS 49152, SA,DA,CX.CY,RA, SA and RA

are the source and destination addresses of the target sprite. CX

and CY are the vertical and horizontal axes of rotation, respec-

tively, with rows and columns numbered from zero in the up-

per left comer. RA is the radian angle oi' rotation. The rotate

routine requires that the source sprite be memory resident and

will create one rotated copy per call. To reduce program

lengthy variable limits are not tested.

Rotation calculations are performed on set pixels only, allow-

ing small sprites to be rotated very quickly. To prevent annoy-

ing flicker when rotating large sprites, change sprite pointers

only after the rotation is complete. Because the rotated sprite

is rounded to pixel boundaries, an exact representation is

rarely possible. Depending on the shape and detail of your

sprite, some rotation angles provide better results than others.

Experiment and use the angles that work best.

If you want to use Rotate in your ML programs, load SFB and

$FC with the source sprite address, load $FD and FE with the

destination sprite address, and load variables ex. CY, stNM

COSM, SGNSIN and SGNCOS with the desired values prior to

calling. SGNSIN and SGNCOS are trig function signs. These

should be set to zero for positive functions or one for negative

functions. SGKM and COSM must be 256 times the actual SON

or COS values (use SFF for 1). With variables set. enter Rotate

at the label mlent.

Qiiuntization

As 1 developed the sprite rotate program I encountered several

unplanned difficulties, primarily due to rounding inaccuracies

and quantization limits. Quantization means that a quantity ex-

ists in integer steps only, with no possible in-between values.

Discounting the possibility of a sharp knife, seeds in an orange

are quantized. Your orange might have one. two or Ave seeds,

mine probably 20 or more but no possibility of 13,75. Pixel

positions on a sprite or bit map screen are also quantized. We
can draw a spot at the X.Y position 12,7 but not at pixel posi-

tion 12-73.7.42. The rotation equations (see assembly listing)

allow a precise calculation of exactly where a rotated pixel be-

longs. Quantization, however, prevents perfect pixel place-

ment, leading lo distortion of the rotated image and occasional

holes. In my rotate routine, holes were minimized by delecting

adjacent bits along the X axis and plotting the point midway

between them. The current version of sprite rotate still shows a

few holes when a solid (all bytes $FF) sprite is rotated to an-

gles near 45 degrees. Without the extra plotting, the results re-

semble Swiss Cheese.

Understanding the Ruutlne

With experience, expressing integers in ML is easy, but how

can fractions be handled? in everyday math, the decimal point

separates integer and fractional quantities, with numbers to the

right of the decimal weighted by lOE-l. 10E-2and so on. The

same rules apply in binary. While bit zero is normally weight-

ed by 2E0, this convention may be changed as desired, provid-

ed that values are correctly used throughout the program.

An alternate way of looking at binary fractions is lo apply

scaling. For example, rather than trying to express one half di-

rectly in binary, multiply .5 by 256 and use the resulting 128

l$KO) in your program. Results are 256 times too large, but can

be rescaled after all mathematics are completed. Scaling is not

a second method; \x\ simply an alternate approach to under-

standing the technique.

After several months of experimenting with rotation, 1 sudden-

ly realized that massive multiplication is not required. Since

rotation equations are linear, the effects of X and Y changes

are independent. This realization led to calculating a lookup

Transactor 36 July 1988: Volume 9. Issue)

_ir L-xr ^-.n

table by addition after multiplying to locate the firsi point. The

current routine uses lookup tables for X only, as speed im-

provemenls in Y were nol dramatic. The multiply routine is

unusual in its handling o(^ signed numbers. If you are planning

a program where boih positive and negative variables can oc-

cur, checking this portion of code may provide some new

ideas.

Several approximations used in the sprite rotate routines are

permitted by the small size (21 by 24 pixels) of sprites. Any

sprite pixel position can be expressed in five bits, allowing a

truncated multiplication. Sines and cosines can be approximat-

ed to an accuracy of one part in 256 in a single byte (MSB =

2E-1), For sprite-sized objects higher accuracy is unnecessary.

These two simplifications reduce code requirements and speed

calculations considerably.

The present routine accomplishes my original goals; however,

Vm not completely satisfied. Tm slill researching and analyz-

ing to find the ultimate rotation algorithm. If you have ques-

tions on the current routine or suggestions on better methods,

feel free to drop me a line, 1 have one idea I'd like to try right

now, but first Td better finish mowing the lawn.

Listing I: BASIC demo program for the sprite rotate routine.

LI 10 rem revolving gun turret de&onstrates

U 20 ren sprite rotation and "holes"

HI 30 i£ n=0 then d=1: load "rotate,o",B,l

PC 40 poke 53280,0: poke 53281,0: print"[clrl"

U 50 $p=130: poke 2040, sp

PA 60 1=55350; poke x,l; vic=532fl8

LB 70 poke vic,40; poke vicfl;200

DC 80 poke vic+21,1

m 90 for 1=0 to 62: cead a

OB 100 poke 8320H,a; next

OF 110 ss=9320: k=0: cx=12; cy=10

HP 120 for i=l to 32

E£ 130 ra=2Mpi]/32'i: da=a38Ufi4*k

IJ4 140 sys 49152, S5,d3,cx,cy,ra

FL 150 poke 2040, 13Uk

FF 160 k=k+l and 1

OK 170 next

CB IBO data 0^ 0^

Iffi 190 data 0, 0,

GC 200 data 0, 0,

LP 210 data 0^ 36^

FA 220 data 0^ 36,

PA 230 data 0, 36,

JB 240 data 0, 36,

DC 250 data 0^ 36^

NC 260 data 0, 36,

HD 270 data 0, 36,

BE 2B0 data 0, 36,

EJ 290 data 31, 2S5, 248

OJ 300 data 3lr 255r 24S

IK 310 data 31, 255, 24B

CL 320 data 31, 255, 248

ML 330 data 31, 255, 24S

QL 340 data 31, 255, 248

AN 3S0 data 31, 255, 248

EK 360 data 15, 255, 240

no 370 data 7, 255, 224

Qt 380 data 0, 0, ^

Listing 2: Generator program to create "rotate.o" on disk.

CI 1000

BB 1010

HI 1020

OG 1030

IE 1040

HL 1050

JN 1060

GE 1070

LP lOSO

GN 1090

EL 1100

GN 1110

IE 1120

GG 1130

GP 1140

CP 1150

JN 1000

FN lOlO

LH 1020

LA 1030

PM 1040

IG 1050

FF lOSO

AH 1070

KL lOBO

LH 1090

FI 1100

AB 1110

IH 1120

PL 1130

DR 1140

CH 1150

GL 1160

JP 1170

HO 1180

JE 1190

NN 1200

PN 1210

FB 1220

JH 1230

BH 12.40

Ca 1250

KC 1260

LK 1270

AJ 12B0

BG 1290

PH 1300

FF 1310

FH 1320

MI 1330

ND 1340

EP 1350

rem generator for "rotate,
o"

ndS="rotate,o'': rem name of proqrai

nd=B24: sa=49152: ch=99925

for i=l to Dd: read x

ch=ch-i: nert

if choO then piinf'data error"; fltop

prinfdata ok, no* creating file": print

restore

open 8,B,l,"0:"+f$

printlS, chrS (sa/256) chrS [sa-int (sa/2561 1

;

for 1=1 to nd; read &

printte,chrS(xl;: next

close B

print"prg file '";fS;"' created--/'

pmt"thi3 generator no longer needed."

1360

JL 1370

CB 1380

JE 1390

ON 1400

GA 1410

data 32,

data 133,

data 132,

data 1,

data 32,

data 194,

data 32,

data 194,

data 32,

data 194,

data 63,

data 162,

data 172,

data 141,

data 194,

data 32,

data 194,

data 194,

data 194,

data 194,

data 1,

data 214,

data 195,

data 32,

data 195,

data 192,

data 141,

data 24,

data 9,

data 157,

data 211,

data 109,

data 23,

data 141,

data 193,

data 194,

data 42,

data 24,

data 208,

data 100,

data 141,

data 194,

40, 194, 32,

252, 32, 40,

253, 133, 254,

184, 140, 192,

1, 184, 14D,

162, 181, 160,

107, 226, 32,

142, 194, 194,

162, 187, 32,

141, 187, 194,

169, 0, 145,

0, 142, 196,

187, 194, 169,

207, 194, 140;

173

r

187, 194,

47, 194, 141,

162, 1, 142,

172, 1B6, 194,

141, 211, 194,

194, 173, 1B6,

32, 47, 194,

194, 162, 1,

194, 172, 187,

47, 194, 141,

206, 196, 194,

194, 172, 186,

216, 194, 140,

189, B, 195,

195, 189, 32,

33, 195, 24,

194, 157, 217,

212, 194, 157,

20B, 213, 169,

197, 194, 23B,

162, 0, 238,

177, 251, 160,

176, 16, 232,

208, 232, 173,

217, 96, 133,

24, 189, fl,

205, 194, 189,

141, 199, 194,

1, 1B4,

194, 32,

32, 40,

194, 32,

193, 194,

194, 32,

137, 194,

169, 181,

100, 226,

142, 195,

253, 136,

194, 174,

1. %
208; 194,

74, 168,

209, 194,

196, 194,

169, 1,

140, 212,

IS*, 74r

141, 213,

142, 196,

194, 173,

8, 195,

174, 194,

194, 32,

240; 194,

109, 207,

195, 109,

189, 216,

194; 189;

241, 194,

255, 141,

197, 194,

202, 194,

8, H,

136, 208,

202, 194,

98, 134,

195, 109,

32, 195,

24, 189,

132, 251

1, 184

194, 32

40, 194

32, 40

212, 1B7

141, 1B6

160, 194

32, 137

194, 160

16, 251

195, 194

47, 194

174, 195

169, 1

140, 210

174, 194

32, 47

194, 174

163, 169

194, 140

194, 174

192, 194

140, 32

194, 173

47, 194

162,

194, 157

208, 194

194, 109

240, 194

232, 224

202, 194

32, 218

172, 202

215, 194

249, 224

201, 62

99, 132

188, 194

109, 189

216, 194

_ I

Transactor 37 Jury 1966: Volume 9. Issue!

FQ 1420 data m,
BO 1430 data 194,

OL 1440 data 201,

JF 1450 data 173,

KA 1460 data fi,

DB 1470 data »a,

X 1480 data 209,

NI 1490 data 141,

BE 1500 data 24,

AB 1510 data 201,

LI 1520 data 48.

DO 1530 data 193,

n 1540 data 35,

KH 1550 data 194,

FG 1560 data 199,

Gfi 1570 data 194,

LI 1580 data 253,

^ 1590 data 2,

EM 1600 data 194,

EK 1610 data 194,

m 1620 data 41,

GO 1630 data 109,

EN 1640 data 194,

EH 1650 data 47,

Ul 1660 data 109,

PI 1670 data 194,

JP 1680 data 251,

DD 1690 data 32,

(3 1700 data 204,

M 1710 data 178,

HL 172D data 24,

GC 1730 data 179,

HO 1740 data 169,

CB 1750 data U,

JA 1760 data 194,

KG 1770 data 235,

LJ 1780 data 194,

PO 1790 data 13,

KE IBOO data 152,

AL 1310 data 96,

JB 1820 data 12B,

IF 1830 data 165,

JI 1S4D data 44,

HP 18SG data 98,

a 1860 data 1,

n 1870 data 0.

GC 18B0 data 0.

AD 1890 data 0,

13) 1900 data 0,

EE 1910 data 0,

OE 192D data 0,

IF 1930 data 0,

Oi 1940 data 0,

HG 1950 data 0.

Gfi 1960 data 0,

AI 1970 data 0,

KI 1980 data 0,

EJ 1990 data 0,

OJ 2000 data 0,

IK 2010 data 0,

CL 2020 data 0,

190, 194,

109, 191,

194, 48,

199, 194,

m, 200,

16, 46,

194, 173,

199, 194,

173, 206,

194, 109,

7, 201,

165, 98,

193, 10,

173, 199,

194, 74,

16S, 189,

96, 128,

1, 162,

194, 172,

237, 197,

194, 105,

192, 194,

172, 187,

194, 105,

193, 194,

200, 200,

106, 41,

253, 174,

194, 142,

194, 162,

73, 255,

194. 10,

0, 162,

203, 194,

144, 3,

170, 173,

77, 179,

138, 73,

73, 255,

165, 97,

240, 20,

98, 74,

169, 255,

162,

96.

0,

0,

0,

0.

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

Or

0,

0,

0,

0,

0,

0,

0,

0.

0,

0,

0,

0,

0,

0,

0,

0,

0,

141, 2DE,

194, 141,

19, 201,

48, 10,

194, 32,

24, 173,

199, 194,

48, 28,

194, 109,

214, 194,

21, 176,

166, 99,

109, 200,

1&4, 41,

74, 74,

210, 193,

64, 32,

1, 142,

186, 194,

194, 141,

128, 141,

141, 189,

194, 173,

128, 141,

141, 191,

177, 251,

192, 141,

32, 158,

180, 194,

1, 201,

105, 1,

10, 10.

5, 10,

144, 9,

238, 178,

178, 194,

194, 77,

255, 24,

105, 0,

201, 129,

201, 120,

232, 224,

44, 169,

6, 102,

0, 0,

194, 189; 240

200, 194, 141

21, 176, 15

201, 24, 176

178, 193, 165

205, 194, 109

109, 210, 194

201, 24, 176

213, 194, 173

141, 200, 194

3, 32, 178

164, 100, 76

194, 141, 200

7, 170, 173

24, 109, 200

17, 253, 145

16, e, 4

196, 194, 174

56, 173, 193

198, 194, 32

188, 194, 152

194, 174, 195

198, 194, 32

190, 194, 152

194, 172, 202

42, 200, 177

215, 194, 96

173, 96, 140

160, 0, 140

0, 16, 6

232, 202, 142

141, 203, 194

46, 178, 194

24, 109, 204

194, 202, 208

168, 173, IBO

196, 194, 240

105, 1, 170

188, 138, 24

240. 18, 201

144, 13, 170

128. 208. 250

0, 44, 165

2, 1S2

Or

0,

0,

0,

0,

0,

0,

0,

0.

0,

0, 0,

0, 0,

0,

0,

0,

0.

0.

0,

0,

0,

0.

0,

0,

0;

0, 0,

0, 0,

0, 0,

144,

0,

0,

0,

0,

0.

0,

0,

0,

0,

0,

0,

0.

0.

0,

0,

0,

0,

Or

Or

Or

Or

Or

0.

0.

0,

Or

Or

Or

Or

0,

0,

0,

0,

0,

Listing 3: Merlin-format assembler source code.

* aprite rotate rev 6 jaii 88

' from basic prograo by chris zam^a
* transactor vol5 11

* to use sya 49152, ss, da, cx,cy,ra

* iim frost

* 4740 harbinson ave

* la DBM ca 92041

* equates
1 1 . J

facsgn - $E6

facexp = S61

facnO = S62

StUUy = &bbd4

Idffllay = $bba2

Aini = $e26b

cosine = Sfl2&4

chkcoDi = $aefd

eraltxp = $ad9G

fit fin = Sb801

.:

org $cOOO

* basic OTtry point

i \i

jsr «Tal

jsr fltfix

sty Sfb

sta $fc

;fetch sourc* eprlt* address

;convert to integer

;aave for drawing

jsr eval

jsr fitful

sty Sfd

sta Sfe

;fstch dest sprite address

; convert to integer

;sav» for draKing

jar eval

jsr fltfix

aty ex

;fHtch ox

;coQV«rt to integer

;«rLd save

jsr eval

jsr fltfix

sty cy

, fetch cy

; convert to integer

;and save

jsr eval ;arg in facl

Idx #<arg

Idy t>arg

jsr stfalxy ; store fp acgmunt

jsr BinA

jar normize
1

;aina in facl

, convert to one byte

ftta siom

atx agnsin

nsave sine

;and sign

Ida t<arg

Idy |>arg

jsr Idfalay ;Dove argument to facl

jsr coaiM

jsr nonuze

Bta cOBin

stx sgnccB

;cosa in facl

; convert to one byte

;aave cos

;and sign

* dear destination sprite raamory from machine

* language enter here vith variables set

olent Idy #$3f

Ida tfOO

;64 bytes to clear

cdest sta [Sfd},y ;cleai byte

dey ;decraMnt count

bpl cdest ;loop till 64 bytes clearsd

* calculate table of portions of x2 and y2 due to

Transactor 36 July 1988: Volume 9Jssue 1

* K position across sprite jar Dult

ata tbyl

; return xlsina in ay

;and staah first table values

* conrart one byt» ain« and cosine to tifo byte
'' w sty tbyh ;loH and high bytea

* atgnad integer with sign adjusted for adding

* to current value i2(K),y2(i). as t incraases * add tei^a to form remainder of table

* note that the rotated x (xl) = x canter (ci)

* - X ao that aa x increases xl decreases Idx ffOO ; table pointer

* reiulting in siqnt the opposite of initial

* expectations
1

1

L

tbx2y2 clc

Ida tbxl^x
-

* calculate aigned COS terns adc cosl

ata tbxl+l,x

Idx tSOO

stx nag ;don't flip sign Ida tbxh.x

adc coah .

Idx agncos
n

1
-

sta tbxh+l,x

Idy cosD

Ida fSOl n'multiply by 1

w Ida tbylrX
+

jar mult ;retum tvo byte cos in ay adc sinl
q

sta coal .save low byte sta tbyl+l,x

sty coah p'and high

Ida tbyh.x ;

* calculate signed cos terms for half pixel step adc sinh f.

* (uaed to luininiaa rounding and ^antization errors)
•

ata tbyh+l,x

Idx agncoa
1 im

Ida coan cpx m ; finished 24th element?

lax ;a has coa/2 bne tbx2y2 ;no - loop til done
f

tay ;y has cos/2

Ida fSOl ^multiply by 1 * rotate sprite after calculating new positions

jSt BUlt ; return two byte coa/2 in ay
,

Ida tSff
1

sta hcosl ata bcount
r ^

J

sty hcoah sta yO

"^

1

B

* calculate signed ain terma nxtrow inc yO

jsr newrow

;on first pass y=0

;calculate y based parametera

Idx f$01
-

stx neg ;thiH tin* flip sign ^
,

Idx i$ao ;start each row at left

Idx sgnsin luctbytEi inc bcount ;byte counter
1

Idy sina
1

Ida im ;iiultiply by 1 Idy bcount ; index to byte

jar Dult ; return two byte -ain in ay Ida (Sfb),y ;get byte

sta sinl ,'save low byte
'

-

sty sinh ;and high Idy t$(}8 ;B bits per byte!

- asl adjbyt ;ahift nsb to carry
h

* calculate signed sin terms for half pixel step

* (used to nininiie rounding and quantization errors) * at laat pass through

* of byte being tested

shift, bit 7 of adjbyt ia in bit 7

Idx sgnain

Ida sinM shift rol ;ahift next bit to carry

lar ;* has ain/2 bcs spinbit ;i£ empty don't rotate

tay ;y has sin/2 _
ri

Ida ISDl ;nultiply by 1 shift 2 inx ;next colunn

;last bit?

jsr mult -return two byte sin/2 in ay bne ahift '

sta hsml
aty hsinh cpx 124

bne nxtbyte

;last X?

;no - try another byte
^

* calculate firat table entry "
^ 1

—

Ida bcount ;byte count

Idi (SOI ^set sign flag en? iS3e ;done all 63?

stx neg ;slgD mult negative bne nxtrotf ;no - do another row
-

Idx sgncos ;sign of cosine
\

tti ;back to basic

Idy coaiL

Ida ex

; cosine

;x center of rotation

V

* calculate new bit positions, if values on sprite

* grid plot them

jar lult ; return xlcosa in ay
*' '

ata tbxl ,-and stash first table value * calculate x2=int(-yliiina-xlcosa*cx]

sty tbxh ;loir and high bytea
~"

1

h
spinbit. sta $£2 ;aave current test byte

dec neg ;clear neg flag atx £63

aty &M
;aave sprite i

;save bit count

Idx sgnsiD ;aign of sine
^

r

Ida ex ;iO minus center of rotation oU
«

Idy sinu ;ane byte sine
1-"'

Ida tbxl;X ;get i cos lov byte
j

Transactor 39 July 1968: Volume 9, Issue 1

adc ysinl

ata x21

Ida tbih^x

adc y»inb

std x2

;add -ysina lav byte for EQund

;save for half pixel calc

;now add X cos high byte

;to -ysina high byte

/save iTit«g«r x2 for plotting

*inttg«r x2 now in a - fractional x2 in t

'calculate y2=int (+xlsina-ylcosa+cy)

clc

Ida tbyl.i

adc ycosl

sta y21

Ida tbyh,x

adc yccah

sta y2

sta y2h

;get X sin lov byte

;add -ysina for round

;Bava for half pixel calc

,now add xsin high byte

;to -yco»a high byte

;save integtr [lost in plot)

:aiid a aacond copy for later

*test out of range y and x

bod toobig

OBp (21

bca toobig

Ida x2

boi toobig

aap 124

bcfl toobig

Ida y2

jsr plot

;if negative

:or larger than 24

;skip other calculation*

;i£ negative

;or larger than 24

Hs]cip othar calculations

;plot on dastination aprite

' with current bit in carry, bit 1 is neit adjacent bit,

* if neg flag set, thers are two adjacint bits, so plot

' half pixel betwean then

toobig Ida $62

bpl noplot

;Eetrieve test byte

;unless bit 7 set no plot

clc

Ida x21

adc hcoal ;add half coa low

Ida x2

adc hcosh

Bta x2

;add integer ycos

;ftavfl integer x2 for plotting

bod noplot

CBip 124

bcs noplot

;if negative

;or larger than 24

;Hkip other calculations

Ida y21

adc hsinl

; carry always dear

;add half sin

Ida y2h

adc hsinh

<ta y2

;copy of original y2

;and add -yaina high byte

;save integer

bffli noplot

cwp m
bC0 noplot

;if negative

;oi larger than 24 >.

;akip other calculations

jsr plot

noplot Ida $62

Idx $63

Idy $64

^Jsp shift

2

;plot on destination sprite

;ratriave test byte

; retrieve sprite x

; retrieve bit count

;bac]i to test loop

' X and y calculated - plot on destination sprite

plot asl

adc y2

ita y2

Ida x2

and tS07

tu

a=2'y2 - no carry guaranteed

;a=3'y2

;aave for next calculation

;get nen x value

; trash high nibble

;save pointer to bittab

Ida x2

lar

Isr

Isi

clc

adc y2

tay

Ida bitmaskrX

era (Sfd),y

Jta ($fd),y

rtfl

bitmask dfb UOGDOOOO

dfb %oioooooo

dfb ^OOIDOOOO

dfb %OOD10Q0O

dfb %00001000

dfb IQOODOIOO

dfb *ooooooio

dfb tOOOOOOOl

;a=x2y8

;add bytes from x to 3"y

;pointer to sprite roM

^get value of bit to set

,or new bit uith current one

/save ¥ith nev bit aat

* handle all y related calculations one tiju for each

* sprits row rotated

nevioH Idx t$Dl

stx neg

;«et flag

;flip sign o£ product

Idx sgnsin

Idy sina

;sign of sine

pOrte byte sine

sec

Ida cy

sbc yO

sta yl

;y center of rotation

; subtract current y

;value y to rotate

jsr mult ;retum -ylslna in ay

adc *S80

sta ysinl

;half round

;save fractional part

tya

adc ex

sta ysinh

;get high (integer) byte

;and add offset

;save integer part

Idx sgncoB

Idy cosn

Ida yl

jsr ault

;sign of cosine

;one byta cosine

•J

;retum -ylcosa in ay

adc JtSeO

ta ycoal

;half round

tya

adc cy

sta ycosb

;get high [integer) byte

;add in offset

* arrange bits to flag adjacent bit pairs between

• bytes of each row

Idy bcount

Ida (Sfb),y

Ida (Sfb).y

;grab ptiddle byte of row

pshift bit 7 to carry

;grab last byte of row

; shift carry to bit 7

and t%11000000 ;bits of 'a' {1 to r) msb cnid,

sta adjbyt ;iBab last, trash .

/

rti »' '.n

aC±;

«v>l jfli chJccon

' ,
1.

Transactor 40 Juky 1986: Volume 9, Issue 1

jar «valexp rta ^Isb in a lub in y

Irw^

* Biiltiply one byta trig function in y by xl or yl valua

* (D to 23? in a. uae n«g and sign of trig function in x

* to detflmine sign of product

ult 9ty toi^l

>ti Dsign

Idy |$0D

aty reshi

Idx ISOl

;Bave valui trig function

;and sign

; clear vork space

;
guess sign neg

* convert ace value to absolute value in a. check

* visign, neg and sign of ace value and set flag

* showing sign of product for miltiply

^1

bpl apos

clc

sor ISff

*dc ISOl

inx
r

dex

9tK psign

asl

asl

asl

;s«t flags on a

;branch if positive

[Convert negative

;va1u< to positive

n'Hdjust for next instruction

;set sign flag positive

;save sign flag

; line* tifici sprite vidth is

;24 nax bitSr 6, 7 and 8 are

; always lero - trash then

sta tKQp2 ;and save result

Ida tSOO

Idx t$05

;clear Isb of product

;five bits to nmltiply

shiftA asl

rol reshi

; shift product low byte

;and high

asl tenp2

bcc nobita

;shift msb to carry

;i£ no carry don't add

clc

adc teapl

boo nobita

;else add to accunulato

;bit and high bit if re<

inc rashi

nobitn dex

bne shift!

;decrament counter

;and loop till six bits

tu
Ida reshi

-hold result lov

determine sign of product

Uy
Ida rosign

«or psign

•or neg

beg ndone

fen

eor |$ff

clc

adc ISOl

tu

tyt

•or tSff

adc ISDO

Uy

Bkdona txa

da

;sava reshi for following

;acc zero if negs cancel

;if positive

.-else recover lov byte

; flip bits

; negate low byta

;aDd save

;recover high byte

;flip bits

;coi^lete negation

;iub in y

;lBb in t

;for next add

a: XE
* shift facl value into a single

' byte with bit 7 value 2e-:

normize ld« fac«]q]

oBp isei

bag vail

onp IS SO

bag valok

cap t$7B

bcc valO

tax

Ida facmO

norl Ist

inx

cpx ISSO

bne noil

hex 2c

vail Ida tSff

hex 2 c

valO Ida fSOO

hex 2c

valok Ida facnO

Idx |$00

asl facsgn

bcc isgn

Idx ISOl

xsgn its

* variables for rotatt

r**hi ds 01

psign ds 01

iDsign ds 01

arg da 05

simi ds 01

ccsn ds 01

ysim ds 01

ysinh ds 01

ycosl ds 01

ycoih d« 01

CI ds 01

cy ds 01

sgnsin ds 01

sgncos ds 01

neg ds 01

yO ds 01

yi H^ Ql

s

^ ds 01

fi ds 01

yah ds 01

bcount ds 01

tei^2 ds 01

ten^l ds 01

x21 ds 01

y21 ds 01

cosl ds 01

cosh ds 01

hcosl ds 01

hcosh ds 01

sinl ds 01

sinh ds 01

biinl ds 01

hsinh ds 01

adjbyt ds 01

tbyl ds 24

tbyb ds 24

tbxl ds 24

tbxh ds 24

;if 9jp is 81 value is 1

;if axp is 30 no shift needed

;i£ ej^ is < 7S valu* Is taro

;vovt exponent to x

;get fac msb

; shift bits and increase exp

runtil bit 7 has value of

;2a'l

;skip next instruction

;1/2S6 less than 1

;8kip next instruction

;s)tip next instruction

;sat X for positive

;shift neg bit to carry

;if no carryj sign is pos

:s«t X for negative

;high byte orultiply result

;sign of mltiply product

;3ign of trig funct this siult

^-floating point value drgunant

;sina in nultiply £ora

;cosa in nultiply form

.'fractional part y*aina

;int»ger part

[fractional part y'cosa

; integer part

;x canter of rotation

ny center of rotation

;sigii of aine tern

;sign of cos tern

;£lag - value is negative

-column count

;y offset frca cy

; rotated x position

; rotated y position

;copy of y2

;bit count

Transactor 41 July 196d: Volume 9, Issue 1

structured DATA and Seeding RND

Consult the oracle inside your computer

bv Audrvs Vilkas

The program that accompanies this article was written in

Commodore basic and is an exercise in using structured data

statements and seeding the random function RND provided by

the BASIC inlerpre:er, I will call ii the Hexagram Program for

reasons which will soon be clear. This program may be embel-

lished with many "not loo difficuh to implement" subroutines,

providing the reader with his or her own version.

Some historical background will be presented below, but we
will first explain what a hexagram is.

Reading the Hexagrams
I.

All hexagrams are composed of two trigrams (an upper and a

lower) chosen from the following eight basic trigrams:

Molivation

In ihe September 1986 issue of Transactor (Volume 7, Issue

2). there is an interesting little tidbii called ''Animals: An Ex-

ercise in Artificial Intelligence", by Chris Zamara. In it he

constructs a data base which "increases its knowledge as it is

used../' by user interaction with the program. Questions are

asked by the machine and the user's answers are stored in a

record to be referenced later as the program matures.

On the other hand, in the May 1 0th, 1986 issue of Science

News there is an article "Inside Averages'* by Ivars Peterson,

in which he discusses Diaconis' analysis of syllable patterns in

Plato's books. Using techniques that depend on certain aver-

ages being known though original data are missing, and using

certain statistical techniques applied to these so-called hidden

averages. Diaconis is able to conclude that Plato wrote his

books "top to bottom". These techniques are applied in such

technology as X-ray tomography and side-view radar. I will

not go into any technical detail on these subjects, but I will in-

stead provide the reader with the gist of the Hexagram Pro-

gram, which is a little more iighi-weight\

This program is the problem of "Animals'' somewhat in re-

verse. That is, the user begins asking the questions and the ma-

chine responds with a pseudo-random answer! Whether the

answer is applicable to the question will he left for the user to

decide. At first glance this may seem a bit outrageous but for

now please bear with me.

The material for the Hexagram routine is rooted deeply in his-

tory and comes from what is known today as the / Ching. The

/ Ching (or Chou I) is a collection of symbols and writings of

very great antiquity, at least 3000 years old; its origins may go

back further still. Confucius referred to the document as "very

old'* 2500 years ago.
' ^"

Ch'ien -

Heaven, sky, cold, creative,

father, active, strong, firm

r 4

Tui

Lake, marsh, rain, autumn,

joyful, youngest daughter

Li

Fire, lightning, sun, summer,

beautiful, middle daughter

Che^n

Thunder, spring, arousing,

moving, active, eldest son

1 -

\

K'an ' -

Water, cloud, moon, winter,

dangerous, middle son

K^un

Earth, heat, receptive,

yielding, dark, mother

Sun

Wind, wood, gentle,

penetrating, eldest daughter

Ke'^n

Mountain, thunder, stubborn,

perverse, youngest son

Juxtaposing any two of the above trigrams produces a hexa-

gram. There are addidonal sets of attributes and structure im-

posed on the hexagrams from which much meaning is derived,

and over the centuries these have evolved into the associated

Transactor 42 July 1988: Volume 9. Issue 1

texts. These structures are complicated and we will not go into

ihem here. There are four basic principles worth noting

though: they are *^The Great Y\n'\ "The Lesser Yang^\ "The

Lesser Yin" and *^The Great Yang". Their mysterious polari-

ties determine whether the lines in a hexagram are changing or

not. Thus, the concept of a distinct hexagram pair is arrived at

when there is a changing line.

If one receives a changing line, a Hexagram Generating Pro-

gram could maybe highlight the line and mark it with a 'c^ to

indicate the change. This is the line to note when reading the

hexagram's associated text, which could be titled "lines". The

hexagrams are numbered from the bottom up, starting at line

one (at the bottom) and going up to line six (at the top). For

example, suppose we ask the question "How many times may

T ask the same question?^' and we get the following two hexa-

grams, #4 ("Youthful Folly'^) and #1 ("The Creative"):

c

c

c

sixth place

fifth place

fourth place

third place

second place

first place

#4 #1

The first hexagram (#4) is composed of "yin" lines except for

a "yang" line in the second and sixth places. There are four

dynamic yin (in the first, third, fourth and fifth places). These

are the lines, in this case, which yield a distinct second hexa-

gram. When one reads the hexagram, in addition to reading

The Image and The Judgement, in this case, one also reads the

changing lines in hexagram #4. (Note that hexagram #4 con-

cerns the repeated asking of the same question - a "logical

glitch".) The second hexagram - #1, The Creative - is also

read but no text associated with the lines needs to be read. Of

course, one may not receive any changing lines, so only The

Image and The Judgement are to be read and the hexagram

pair is nondistinct. Traditionally, if only one change occurs in

a hexagram you then don't read the second hexagram. I will

not follow that convention here.

Some Hislorical Background

Bemhard Kalgren, in his Sound And Symbol, writes of the

legend:

*'Long, long ago, in the golden age, there was a dragon horse

which came out of the Yellow River with curious symbols

traced upon its back, and revealed them to Fu-hsi (the first of

China^ legendary primeval emperors). This potentate copied

them and thus acquired the mystical characters which later be-

came the skeleton of the I King (now I Ching), the Canon of

Changes, one of the Five Canons."

The Book of Changes consists of 64 hexagrams, and has a his-

toriographical nature. According to lulian K. Shchutskii, a

Russian sinologist, the / Ching was basically a divinatory text

that began taking on a philosophical countenance after many

centuries of being appended by the commentary schools (in

which, by the way, Confucius played no direct part). The Book

was then employed by politicians in China and Japan, Over

the thirty centuries or so, the hexagrams have taken on a wide

range of meaning depending upon the context in which they

are applied.

Thus, the use of the Canon of Changes as an instrument of re-

flection and thought i.s not new, as evidenced by the existence

of Taoist, Confucian and Buddhist schools. There have been a

few more recent students of the Choti /, notably the famous

mathematician, Baron Gottfried von Leibniz, one of the inven-

tors of calculus; the psychoanalyst, Cari Jung, a famous stu-

dent of Sigmund Freud; the Nobelist in literature, Hermann

Hesse {author of The Glass Bead Game)\ and others.
r

Leibniz referred to the / Ching as a "Two-Element Arith-

metic"; had he lived later he might have viewed it as an exam-

ple of a Boolean algebra (the foundation of modern computer

science).

' '
I

In particular, the ancient Chinese were farmers, so the hexa-

grams themselves are shrouded in interpretation as mystical

weather-like symbols. Such phenomena, as studied today by

meteorologists, are known as the Lorenz Strange Attractors.

Essentially, these are the set of equations which describe tur-

bulence and chaos, the difficulties involved with predicting the

weather. The mathematician and philosopher of the Sung Dy-

nasty (A.D, 960-1279), Shao Yung, studied the mythical Fu-

hsi 's description ^'following a natural progression of weather

conditions". These patterns are depicted as the doubling of

two trigrams producing such primitive equations as:

I I
- I

The Kou Hexagram #44, Ch'ien/Sun: The Sky Is Clear and

The Wind Comes, traditionally numbered (7,7,7) and (7,9,6):

7 at top 110
7 in the fifth I 1

7 in the fourth i 1

7 in the third 1 1

9 in the second 1 I 1

6 in the first 00

Chien

Sky (upper trigram)

Sky (upper middle)

Sky (lower middle)

Wind (lower trigram)

Sun

and changing into the T'ung Jen Hexagram #13, Ch"ien/Li:

The Wind Brings Heat, traditionally numbered (7,7,7) and

(7,8,7):

7 at top ^ 110
7 in the fifth I 10

7 in the fourth I 1

7 in the ihird 1 1

8 in the second 1 I 1

7 in the first 00

Ch ien

Sky (upper trigram)

Sky (upper middle)

Wind (lower middle)

Heat (lower trigram)

Li

•\
I

Granted, these formulae seem a bit obscure but we must re

member that ihey are "very old'*.

Tronsactor 43 July 1968: Volume 9. Issue 1

^^ v^—

Thus 1 1 or (1 1 or 1 1) say, can be thought of as a symbohc

represen talion of the static yang numeraT (7). {i,e, not the

number 7), generated by some means, say flipping three coins

at once, (where \ stands for heads and stands for tails) and

100 (or 001 or 010) ihe representation of a static yin (8) gener-

ated similarly.

If three heads or tails are encountered (9 or 6), the hexagrams

are then changing, yielding a distinct pair, as shown above.

Note that the above binary symbols do not form a true mathe-

matical description of a binary number in the modem sense,

though the ancient scholars may have mysteriously inserted

implicit values of I or just a,s in an IEEE-type format which

may use an implicit 1 to represent floating point numbers.

Today the / Chin^ is widely used as an oracle as well as a

guide to the study of ancient Chinese characters and to the

myriad of philosophies inherent in it. It is the gem of Chinese

astrology, but has other aspects as well It has a natural affinity

to computer programming, being a Boolean system.

.

For those who are interested, an unsolved problem, as far as

we know, is the generation of the so-called Shchutskii num-

bers: numbers assigned to the hexagrams concerning ihe oc-

currence of the four mantic forms: yuan, heng, li, and chen,

curiously extant in exactly half of the 64 hexagrams of the first

layer or wing of the text. There seems to be no formulae or

patterns as to why ihey occur In some hexagrams but not in

others. Indeed, the / Citing has changed much since its incep-

tion, and in its incipient stage consisted of oral mantic tradi-

tions thai lost their original meanings through gradual philo-

logical redefinition of the mantic formulae.

The intersection of the host of meanings derived from an in-

quiry of the / Ching brings us onto the frontiers of artificial in-

telligence. These great varieties of interpretation are employed

in certain psychoanalytic games which are user friendly, giv-

ing them a sense of volition. For example, the DATA statements

in the Hexagram Program can be any statements, phrases or

symbols with repetition among the statements. Thus if the

computer picks DATA 128 it may be a "Morse Code beep'*, or

an animal noise, or a flashing ?.creen together with a thunder

clap followed by some comforting words, and furthermore it

may generate one or more data statements with such notions.

The Program as Oracle: Seeding RND
I

There are many ways one may seed the RND function. One

way is to write a simple word processor that echoes one's

question on the video screen and adds the numerical value of

the ASCn string modulo 64 (or something similar)

1 will not employ this method but will leave the program at the

mercy of arbitrary numeric input by the user to determine a

pseudo-random seed. Possibly, by adding in Ti$ one may pro-

duce a better pseudo-random routine. The theory of random

numbers is not a trivial matter and much can be done in this

respect.

The DATA statements are chosen according to the formula

126-H2*n, where n=0,...»63 as is obvious in the program's DATA

listing, but is somewhat more involved as evidenced in the

hexagram-naming routine seen in the main body of Ihe pro-

gram (compare basic lines I through 42, panicularly 25 and

26). I have decoded the appropriate hexagram corresponding

to the correct data number. I include the traditional numbering

together with the actual name of the hexagram corresponding

to that numbering in the data statements. Therefore, there are

actually two numbers for each hexagram.

To consult the oracle, run the basic program, and input any

two integers in response to the prompts. The larger the num-

bers you use, the slower the program will run. That is all there

is to it. You play the ^*Strange Attractor". In deference to the

Taoisl idea that a hexagram is the lime, 1 include Tis next to

each line.

Of course, you may restructure the whole program (possibly

incorporating ideas from the '"Animals" program) and open

files on a disk governed by the hexagram-naming routine, or

do whatever you wish. Even increase the number n to 127 to

create hepiagrams. or to 255 for octagrams, and so on. You are

only limited by your imagination.

In summary, the hexagram-gencrating program is a computer-

ized / Chin^. Instead of flipping coins or using yarrow stalks

to generate hexagrams and then looking up a hexagram's asso-

ciated text, everything could be provided in the computer pro-

gram. This program took a long time to evolve, and many

hours of programming and research went into it. We sincerely

hope you enjoy it. My special thanks to Prof. Charles

Lilzinger, Prof. Roy Leipnik, Ingeborg Comstock, James Cen-

ntanni, Dr. Ibrahim Mustafa and his wife Truus for their help-

ful suggestions. All mistakes are my own, though I hope that

they are few and far between. Dr. Mustafa and I have written a

Text-to-Hexagram Processor in Pascal and Assembly Lan-

guage. It employs a word processor with onscreen menu and

associated files. We would appreciate it if you would drop us a

card with your ideas concerning the improvement of the Hexa-

gram program, as well as notes on bugs that you may find.

Please send all correspondence to:

CompuCell

FO. Box 2493

Goieta^CA 93118
1

References

1) Blofeld, J., / Ching, E.R Dutton Co. Inc., New York

I
,

2) Hesse, H., The Glass Bead Game, ^^ . .

Bantam Books Inc., New York

3) Jung. K., Mart and his Symbols, Dell Publishing Co.

4) Kalgren, B., Sound and Symbol, Oxford University Press

Transactor 44 July 1988: Volume 9, Issue 1

5) Legge, J., / Cfiing, Causeway Books, New York

6) Shchuiskii. 1., Researches on the I Ching.

Princeton University Press

7) Wilhclm/Baynes. / Ching. Princeton University Press

8) Wilhelni. Ei^ht Lectures on the / Ching,

Princeton University Press

* '

9) Shao Yung, Plum Blossom Numerology

10) Wincupp. Rediscovevin^ the I Ching,

Doubleday. New York

J 1) Transactor, Volume 7, Issue 2

\2) Science News, 5/S6

Listing: The Hexagram Program
.1-

(This program will run on all 8-bit Commodore computers).

DH 1 ret "* program by audry villtas and james centanni * copyright 1986 *'*

PL 2 printchr&(147}:dijii tfS(64,2}:t=0:i=0;bS=chr5(192):b2S=bStbS:b5S=b2$+b2$+W

HG 3 input" integer V:i

LO 4 input'integer 2";y:print;print

CP 5 for x=l to 6

LL 6 for l=int(End(0)*x) to int(md(l)*y)

IB 1 i=irt(nid(li*2)

LB a pirit{ird(l)"2)

OB 9 lt=int[rnd{U'21

OA 10 next

FA 11 if i=0 and]=0 and lt=0 then s=l:p=2;goto 21

U 12 if i=l and j^l and lt=l then s=2:p=l;qoto 22

ET 13 s=i+j+k

AB 14 p=s

IH 15 if i=0 and j^O and k=l goto 23

JW 16 if i=0 and]=! and 1:=0 goto 23

KH 17 if i^l and]=0 and lc=0 goto 23

AO IB if 1=0 and i=l and lc=l goto 24

flO 19 if i=l and i=0 and lc=l goto 24

CO 20 if i=l and j=l and lt=0 goto 24

EJ 21 print"6 ";b2S;" ";b25;" ";b5$;" ";tiS:goto 25 : rem moving yin line

lA 22 print"? ";b5S;" ";b2S;" ";b25;" ";ti$:goto 25 Tern moving yang line

GE 23 print^S ";b2S;" ";b2S;" ";b2S;" ";b25;" ":tiS:goto 25 :rem static yin

HK 24 print"! ";b5$;'' "i^H:" ";ti$:goto 25 :rem static yang

BF 25 t=[2*x)'stt

Aa 26 i=(2^)[)*p+i

aC 27 next x

KN 29 for k=1 to 64

M 30 for y=l to 2

U:31 read wS{x,y]

JZ 32 next y:next x

NL 33 for dfI to 64

CB 34 if t=val(w$[fli,l}} then tyS=wS(m;2)

PO 35 if zml(wS(n,l)) then i$^${a,2]

PA 36 next a

JK 37 print:print:print"data |:''t:print" hexagram: "ty^print

BO 38 prinfdata |;"z:print" hexagram: "z$

ja 39 print:print;print"again? {y/n}" V _
^

^»

MD 40 get aS;if aS='"' then 40

GN 41 if aS="y" then run
_

RC 42 end

PM 126 data 126, 2 receptive *tenth month

IL 12B data 128; 23 splitting apart*ninth month

GA 130 data 130, 30 holding together'third jwnth

LJ 132 data 132, 20 conteinplation 'fourth or fifth or sixth month

fiE 134 data 134, 16 enthusiasi'second month

IM 136 data 136, 35 progres3*fir5t month

BF 133 data 138, 45 gathering together"second month (approx, march)

EC 140 data 140, 12 stagnation*seventh month

PM 142 data 142, 15 imdesty*eleventh month

FB 144 data 144, 52 keeping still*ninth month {appron. oct.)

IF 146 data 146, 39 obstructionHenth month {approK. nov.)

GE 148 data 148, 53 gradual development"twelfth month (approx, jan,)

BC 150 data 150, 62 preponderence of the sffall*tweifth month lapprox. jan-

AO 152 data 152, 56 uanderer*thlrd ma!tii [approx, april)

BI 154 data 154, 31 influence*fourth month (approx, may)

HK 156 data 156; 33 retreat'sixth month (approx, July)

BK 15B data 15B; 7 amy'third month

IM 160 data 160, 4 folly'twelfth month

EX 162 data 162, 29 danger*tenth or eleventh or twelveth month

IB 164 data 164, 59 diapersion*fifth month

OF 166 data 166, 40 deliverance*first month [approx. feb,)

EH 168 data 168, 64 before coirpletion'tenth month

FL 170 data 170; 47 oppression'eighth month

CG 172 data 172, 6 conflict 'second month

OL 174 data 174, 46 pushing upvaids'eleventh month

EF 176 data 176, IB work on what is spoiled'second month

LF m data 179, 48 the well*fourth month

PJ 180 data 180, 57 gentlaness'seventh mnth

HO 1B2 data 182, 32 duration*sixth month

BC 1B4 data 184, 50 the cauldron'fifth month

flC 186 data 186, 62 preponderance of the great*ninth month

FK laa data 186, 44 coming to meet'fifth month

FM 190 data 150, 24 retum*eleventh [wnth

GD 192 data 192, 27 providing nourishment'tenth month

HP 194 data 194, 3 difficulty in the beginning'eleventh month

JE 196 data 196, 42 increase'twelfth month

OF 196 data 198, 51 shock'first or second or third month

AL 200 data 200, 21 biting through'ninth month

EO 202 data 202, 17 following* first month

IH 204 data 204, 25 innocence*eighth month

CA 206 data 206, 36 darkening of the iight*eighth month

PH 206 data 208, 22 grace'seventh month

DI 210 data 210, 63 after coff?) let ion'ninth month

EH 212 data 212, 37 family*fourth month

NH 214 data 214, 55 abundance*fifth month

FM 216 data 216, 30 the clinging*eighth month

MP 218 data 218, 49 revolution*seventh month

GF 220 data 220, 13 fellowship'sixth month

CG 222 data 222, 19 approach'twelfth month

DH 224 data 224, 41 decrease'sixth month

HE 226 data 226, 60 limitation'sixth month

BI 228 data 228, 61 inner truth'tenth month

KF 230 data 230, 54 marrying maiden'eighth month

FO 232 data 232, 38 opposition*eleventh month

CK 234 data 234; 58 joy'seventh or eighth or ninth month

EH 236 data 236, 10 conduct'fifth month

EE 238 data 236, 11 peace'first month

AI 240 data 240, 26 the taming power of the great'seventh month

LO 242 data 242, 5 waiting'first month .
,

^

JA 244 data 244, 9 the taming power of the amall'third month

ON 246 data 246, 34 great power'second month

FI 246 data 248, 14 great possessions' fourth month

NK 250 data 250, 43 brealcthrough'third month

DE 252 data 252, 1 the creative*fourth month

Transactor 45 Jutv 1988- Volume 9, Issue 1

by Bob Kodadek

After entering a very kirge machine language listing from a

major publication, I was faced with the dilemma of having a

seriously flawed program. Knowing that mosi programs are

thoroughly lested prior lo publication, the errors were proba-

bly mine. Obviously. 1 had made some serious mistakes in en-

lering the hexadecimal listings though I did use the checksum

utility provided-

Most machine language monitors for the C-64 use an eight

byte display line, but some hex program listings do not follow

this convention. Since fhis particular listing used 11 bytes per

!ine» using a machine language monitor to find the errors

proved impossible. My only recourse was to write a program

that would produce a hardcopy of the object file, identical to

the magazine listing, and recheck each byte for error. It took

many hours to review and edit the object code until ail the er-

rors had been corrected. Why did the checksum program allow

these errors?

The answer is that some entry programs produce a **don't

care" checksum. It doesn't care about the individual value of a

byte of data or its position in the line to be entered- The sum to

be checked is produced by adding all the data on a given line

to its line number. In basic it might look like this;

fori-1 to 11

read b

ck=ck+b

next

ck:=ck+ln

While entering a program, if you happen to transpose two or

more data bytes, the line is sull accepted. For example^ if the

next two data bytes to be entered were 40 12, you could type

them in reverse orden as 12 40. The checksum would never

know the difference, it would also be acceptable to enter in

correct values if the total sum is still correct. Fur example, the

same two data bytes could be entered as 42 10. The checksum

says it's a match, but you and I know otherwise. The result is

usually a worthless program. To eliminate this problem we

need intelligent checksum programs that care about the data

received. There is no magic in producing a checksum program

that works, but many publications refuse to bother. Until they

do» this is a problem that we must live with. But now the prob-

lem is no longer hopeless. There is help tivailable.

I

The accompanying program, "Hex File Editor", has a func-

tion for almost everyone. You may read, write, list, edit, or

print the hexadecimal contents of program or sequential files

using simple line numbers and a full screen editor. The num-

ber of columns displayed is user definable, and access is pro-

vided to the disk directory and command channel for easy file

maintenance operations. There is a help menu, and commands

for converting hex and decimal numbers. It can be used as a

fast file copier, to read/alter the load address of a program file,

or to convert PRG files to Seq (or USR) files and vice versa.

The Command Menu
4

Hex File Editor provides a help menu that displays the

available commands, the load address of your file, and its cur-

rent location in RAM. When operating in the command mode,

the program will display the prompt '>\ and a blinking cursor.

Each command consists of a character and an argument where

indicated. Enter the command and press Return. Square brack-

ets show optional arguments, while angle brackets indicate an

argument must be specified. After any disk operation, the error

channel is read and displayed. The available commands are as

follows: ^

E [line#l - f:dit; This command will display the line specified

and enter the full screen editor. AU cursor controls function the

Transactor 46 July 1986: Volume?, Issue 1

same as in the basic editon Press Return to accept the present

line and display the next Hne, You may move the cursor to any

line on the screen. To exit this mode type an asterisk or other

non-hex character and press Return. Without an argument,

editing will start with the first line. Examples:

I

E 100 Enters edit mode al line 100.

E Enters edit mode at line 1

.

L [line#] - LIST: If a line number is not specified, the program

will list from beginning to end, otherwise it will list from the

specified number. Press Shift to freeze the listing, Ctrl to slow,

and Stop to halt. Examples:

L 100 Lists from line 100.

L Lists from line L _ -

P [line#] - PRINT: This is the same as list except output also

goes to a printer with device number 4. Press Shift to freeze or

Stop to exit.

D - DIRECTORY: Displays disk directory. Press the spacebar to

stop and start listing. Press Stop to abort.

R - BKAD FILE: Reads a disk file into memory. You will be

asked for the filename. Do not use quotation marks around the

filename. Enter no name to abort.

W - WRITE FILE; Writes a file to disk from the current data in

memory. If a file already exists, either scratch it or select a

new name. You will be asked for the file type and filename.

X * DISK COMMAND Send disk command. All commands are

supported. You will be asked for the command. For example,

to scratch a file enter s:niename.

- DEC-TO^HEX; Converts a decimal number (0-65535) to

hex. For example, entering #32768 gives a result of $8000.

$ - HEX-TO-DEC: Converts a hex number to decimal. Leading

zeroes are mandatory. For example, $OOFF will yield 255.

C <#> - COLI'MNS: Changes the number of columns dis-

played. The default display is 8 columns. Only a decimal num-

ber from 6 to 1 1 is accepted.

M - MENU: Use this to return to the command help menu at

any time.

I

J'

Q - exit: Exit to BASIC. Performs the equivalent of a cold

start, SYS 64738.
^

'

r

Using The Program
I

'
I

I

Type in, save, and then run the BASIC loader program, listing

I. Hex File Editor is always waiting for the Return key to be

pressed. When this occurs in the Edit mode, the screen editor

begins to process the line the cursor is placed on. First it reads

in the line number and converts it to a two byte binary address

in memory. This determines where your data are going to be

placed in ram. Then it converts each pair of screen characters

into their binary values, carefully checking for spaces along

the way. If it finds an error it prints a question mark at the end

of the tine, stops all processing, and exits to the command

mode. If there is no error, the data are stored in memory.

To check a previously entered program^ first use the READ

command to place the file into memory and select the proper

number of columns for the display line. Do not include any

checksum characters in this calculation. You may then list to

the screen or printer and recheck each line with its original

listing. On very large program listings, this can be done al

your leisure. Just mark the listing to show where you left off.

Only check the pairs of characters that are the actual machine

code in each line of the original listing. The last one or two

pairs of characters are usually the checksum.

Mark each line where an error is found. After the entire pro-

gram has been checked, use the Edit mode to correct the bad

lines, then save the program on another disk using the WRITE

command. To be on the safe side, don't scratch the original

version until you are sure all the hugs are out and you have a
- r —

working copy.
,

To Copy Programs Or Files

As a program or sequential file copier, the program uses the

RAM area 2048-49152 ($0800-$COOO) for storage. This allows

for a program length of over 47,000 bytes, about 1 84 blocks of

disk space. To do a copy, perform the read and WRITE opera-

tions from the menu. Unlike other copiers, you only have to

read the source file once and can specify a different filename

when doing the write. You may then make as many copies as

needed, very quickly, by repeating the write command.

To convert a program file to a sequential tile, or vice versa,

just make a copy. When asked for the file type, enter T' (PRG),

^SMSEQ),or^UntJSR).

Changing The Load Address

When listing program files, the first two bytes in line number

one wil! be the load address in low-byte, high-byte format. By

changing this address and writing a new file, you can relocate

a program that uses the ,8,1 syntax. This can be used on sprite

data, hi-res screens, or relocatable machine language pro-

grams. First read in the file and use the deC-to-hex command

to calculate a two byte hex address. Use the edit command to

alter the two bytes and then save the new file using write.

Rememtier, when referring to a hex address such as $0800

(2048)> the first two characters represent the high byte and the

last two are the low byte. In 6502-6510 machine code an ad-

dress will appear low byte first. In other words the two byte

load address in the above example would appear in line num-

ber one as 00 (low byte) and then 08 (high byte).

Ironsactor 47 Jufy 1988: Volume 9, fssue 1

Listing 1: He\ed-gen

as 10 reiQ c64 hex file aditor

EO 20 ren Ec) 1987 bob kodade)E

JH 30 ren 3164 suirey lane

IF 40 zm aston, pa 19014

AF 50 rea

JJ 60 b1=49152: print "reading,,."

LF 70 for i=0 to 1510

Gl 80 read by; poJte flil+i,hy: ck=ck+by

OF 90 next

FE 100 if C1CO180036 then print "data error!"; end

BH 110 sys aQ

W 120 :

^

CJ 1000 data 32, 238, 196, 162, 0, 134, 251, 132

OP 1010 data 252, 142, 0, 8, 142, I, B, 142

IP 1020 data 134, 2, 169, 15, 141, 32, 208, 141

FF 1030 data 33, 20S, 169, 147, 32, 210, 255. 162 -. .,

OB 1040 data 2, 160, 12, 24, 32, 240, 255, 32

'

FJ 1O50 data 255, 195, 72, 69, 98, 32, 70, 73

HL 1060 data 76, 69, 32, 69, 68, 73, 84, 79

IF 1070 data B2, 13, 13, 13, 32, 32^ 77, 69

PH lOBO data 78, 85, 32, 32, 32, 32, 40, S7

CJ 1090 data 41, 32, 49, 57, 56, 55, 32, 66

GP UOO data 79, 66, 32, 75, 79, 68, 65, 68

KH 1110 data 69, 75, 13, 13, 69, 45, 69, 68

IN 1120 data 73, 94, 13. 76, 45, 76, 73, 83

E 113Q data 84, 13, 80, 45, BO, 82, 73, 78

GO 1140 data 84, 13, 68, 45, 68, 73, 82, 69

3k 1150 data 67, 84, 79, 82, 89, 13, 82, 45

LO 1160 data 82, 69, 65, 68, 32, 70, 73, 76

EB U70 data 69, 13, 87, 45, 87, 62, 73, 84

PC 1180 data 69, 32, 70, 73, 76, 69, 13, 88

GC 1190 data 45, 68, 73, 83, 75, 32, 67, 79

FD 1200 data 77, 77, 65, 78, 69, 13, 35, 45

JE 1210 data 68, 69, 67, 32, B4, 79, 32, 72

HE 1220 data 69, 88, 13, 36, 45, 72, 69, 88

ED 1230 data 32, 84, 79, 32, 68, 69, 67, 13

JH 1240 data 67, 45, 67, 79, 76. 85, 77, 78

HG 1250 data 83, 13, 77, 45, 77, 69, 78, 85

n 1260 data 13, 81, 45, 69, 88, 73, 84,

PC 1270 data 162, 18, 160, 20, 24, 32, 240, 255

PJ 1280 data 32, 255, 195, 76, 79, 65, 68, 32

DE 1290 data 65, 68, 68, 82, 69, 83, 83, 58

HE 1300 data 36, 0, 174, 0, 8, 173, 1, 8

EP 1310 data 32, 82, 196, 162, 19, 160, 20, 24

OG 1320 data 32, 240, 255, 32, 255, 195, 79, 66

ML 1330 data 74, 69, 67, 84, 58, 36, 0, 162

EH 1340 data 0, 169, 8, 32, 82, 196, 32, 255

MR 1350 data 195, 45, 36, 0, 166, 251, 165, 252

FN 1360 data 32, 82, 196, 32, 179, 197, 169, 240

NE 1370 data 133, 130, 169, 239, 133, 131, 169, 13 ^^

U 1380 data 32, 210, 255, 162, 38, 164, 211, 169

"

CK 1390 data 32, 145, 209, 200, 202, 208. 250, 169

DH 1400 data 62, 32, 210, 255, 32, 247, 196, 32

a 1410 data 115, 0, 217, 99, 193, 240, 8, 200

DE 1420 data 192, 12, 208, 246, 76, 35, 193, 152

HO 1430 data 10, 170, 189, 112, 193, 72, 189, 111

IS 1440 data 193, 72, 96, 82, 87, 76, S9, 8fl

BI 1450 data 68, 77, 81, 80, 35, 36, 57, 135

ED 1460 data 193, 11, 194, 141, 194; 99, 195, 163

M 1470 data 194, 239, 194, 17, 192, 206, 194, 97

PC 1480 data 194, 217, 195, 202, 195, 235, 195,

U 1490 data 32, 201, 196, 32, 179, 196, 32, 238

KL 1500 data 196, 162, 3, 32, 198, 255, 160,

FF 1510 data 32, 207, 255, 145, 253, 32, 5, 194

aG 1520 data 32, 183, 255, 141, 204, 197, 201, 64

4 4

f ^

IB 1530 data 240, 8, 173, 204, 197, 208, 21, 76

OD 1540 daU 152, 193, 145, 253, 152, 200, 145, 253

Nfi 1550 data 192, 3, 208, 249, 165, 253, 133, 251

LE 1560 data 165, 254, 133, 252, 32, 179, 197, 165

JE 1570 data 186, 32, 180, 255, 169, 111, 133, 185

HC 1580 data 32, 150, 255, 169, 13, 32. 210, 255

IC 1590 data 32, 165, 255, 201, 13, 240, 6, 32

DI 1600 data 210, 255, 76, 216, 193, 32, 210, 255

GN 1610 data 32, 171, 255, 32, 244, 193, 32, 207

OJ 1620 data 255, 76, 18, 192, 32, 255, 195, 80

HN 1630 data 82, 69, 83, 83, 32, 82, 69, 84

OJ 1640 data 85, 82, 78, 0, 96, 230, 253, 208

Afl 1650 data 2, 230, 254, 96, 32, 255, 195, 84

NN 1660 data 89, 80, 69, 32, 40, 80, 47, 83

PB 1670 data 47, 85, 41, 58, 0; 32; Z47, 196

GJ 1680 data 32, 115, 0, 141, 229, 197, 32, 201

GH 1690 data 196, 162, 3, 189, 227, 197, 153,

EG 1700 data 2, 200, 202, 16, 246, 132, 183, 32

JN 1710 data 179, 196, 162, 3, 32, 201, 255, 32

AH 1720 data 238, 196, 169, 54, 133, 1, 165, 253

BF 1730 data 197, 251, 208, 6, 165, 254, 197, 252

m 1740 data 240, 13, 160, 0, 177, 253, 32, 168

LE 1750 data 255, 32, 5, 194, 76. 70, 194, 76

HI 1760 data 196, 193, 169, 4, 133, 186, 32, 177

EG 1770 data 255, 169, 96, 133, 185, 32, 147, 255

BI 1780 data 32, 255, 195, 13, 82, 69, 65, 68

CX) 1790 data 89, 63, 32, 0, 32, 244, 193, 169

FB leOO data 13, 32, 172, 196, 32, 168, 197, 32

IE leiO data 228, 255, 201, 13, 208, 246, 32, 1

MP 1820 data 197, 32, 168, 197, 32, 29, 196, 173

EA 1830 data 141, 2. 201, 1, 240, 249, 32, 109

IB 1840 data 196, 76, 145, 194, 32, 255, 195, 67

EE 1850 data 79, 77, 77, 65, 78, 58, 58,

NH 1860 data 32, 247, 196, 165, 186, 32, 177, 255

EB 1870 data 169, 111, 133, 185, 32, 147, 255, 160

FD 1880 data 0, 185, 0, 2, 240, 6, 32, 168

BN 1890 data 255, 200, 208, 245, 76, 196, 193, 32

LP 19O0 data 255, 195, 13, 69, 88, 73, 94, 63

DI 1910 data 32, 40, 89, 47, 78, 41, 0, 32

AN 1920 data 228, 255, 201, 78, 240, 7, 201, 89

HE 1930 data 208, 245, 76, 226, 252, 76, 18, 192

GL 1940 data 169, 1, 162, 99, 160, 195, 32, 189

PP 1950 data 255, 169, 96, 133, 185, 32, 213, 243

^ HD 1960 data 165, 186, 32, 180, 255, 165, 185, 32

PE 1970 data 150, 255, 169, 0, 133, 144, 160, 3

JD 1980 data 132, 183, 32, 165, 255, 133, 195, 32

UN 1990 data 165, 255, 133, 196, 164, 144, 208, 61

KC 2000 data 164, 183, 136, 208, 235, 166, 195, 165

EL 2010 data 196, 32, 205, 189, 169, 32, 32, 210

CI 2020 data 255, 32, 165, 255, 166, 144, 208, 37

LJ 2030 data 201, 0. 240, 24, 32, 210, 255, 32

DB 2040 data 225, 255, 240, 25, 32, 228, 255, 240

LD 2050 data 232, 201, 32, 208, 228, 32, 228, 255

HB 2060 data 240, 251, 208, 221, 169, 13, 32, 210

NE 2070 data 255, 160, 2, 208, 179, 32, 66, 246

HG 2060 data 76, 35, 193, 36, 32, 1, 197, 169

ED 2090 data 13, 32, 210, 255, 32, 29, 196, 160

HN 2100 data 34, 169, 157, 32, 210, 255, 136, 16

LG 2110 data 248, 169, 0, 168, 32, 93, 241, 201

AL 2120 data 13, 240, 6, 153, 0, 2, 200, 208

GF 2130 data 243, 162, 255, 160, 1, 134, 122, 132

JE 2140 data 123, 32, 1, 197, 32, 121, 0, 201

OE 2150 data 45, 208, 21, 160, 0, 32, 59, 197

DN 2160 data 153, 0, 1, 32, 115, 0, 200, 204

Fl 2170 data 205, 197, 240, 12, 201, 32, 240, 237

PL 2180 data 169, 63, 32, 210, 255, 76, 35, 193

BH 2190 data 160, 0, IBS, 0, 1, 145, 253, 200

GL 2200 data 204, 205, 197, 208, 245, 32, 109, 196

Transactor 48 July I960: Volume 9, Issue 1

DP
1

2210 data 76, 103, 1S5, 3:, 65, 197, 168, 32 Listing 2:Hexed.src

HE 2220 data 65, 197, no, 152, 32, 205, 189, 76
L

CP

2230 data 35,

2240 data 210,

193,

255,

32,

166,

111, 197,

20, 165,

169,

21,

36,

32,

32

82

^A^A^i

' c64 h«x file editor

OS 2250 data 196, 76, 35, 193, 32, 111, 197, 165 • (0 1987 bob kodadflk

JO 2260 data 20, 201, 6, 111, 7, 201, n. 176 3164 surrey lane

LO

JN

2270 data 3,

2280 data 133,

141,

34,

205,

104,

197, 76,

133, 35,

35,

208,

193,

3,

104

32

aeton, pa 19014

r^H^H K

' iDBrliD-12G macro -asse^lei
V

FK 2290 data 210, 255, 160, 0, 230, 34, 208, 2

GJ 230O data 230, 35, 1", 31, 208, 211, 165, 35 chrgat = S73 ;character get routine

FE 2310 data 72, 165, 31, 72, 96, 32, 151, i9e chrgot = S79 ;get character again .

ON 2320 data leO, 0, 185, 206, 197, 210, 6, 32 endadr = Sft :
pointer: highest address

JG 2330 data 172, 196, 200, 208, 245, 169, 15, 32 xaaptz = Sfd :pointer:to raa

LE 2340 data 172, 196, 160, 0, 140, 203, 197, 177
tessp = $51 .temporary usage

HH 2350 data 253, 32, 86,

r F

196, 169, 32, 32, 172
buffer

»7
= $0100

;filejiaiDe length

;work area

GI 2360 data 196, 238, 203, 197, 172, 203, 197, 204
buf = $0200 ; system input buffer

; start of usable ramX 2370 data 205, 197, 208, 235, 169, 13, 32, 172 sa = 50800

Ifl 2360 data 196, 96, 32, 86, 196, 138, 72, 74 3«cond = $f£93 ;kernal equates

m 2390 data 74, 74, Jl, 32, 97, 196, 104, 41 tksa = 5f£96

JB 240O data 15, 9, 18, 201, 58, 144, 2, 105 ,

acpti = SffaS

fj 2410 data 6, 32, 172, 196, 96, 162, 3, 254
ciout = $f£aa

.

AI

r

2420 data 206,

r

191,

r

189,

r

206, 197; 201, 58, 208
untlk

UDlsn

= $f£ab

= Sffae
\

U 2430 data 8, 169, 18, 157, 206, 197, 202, 16
listen = $£fbl

OJ 2440 data 239, 238, 201, 197, 208, 3, 238,. 202 talk = $ffb4

PM 2450 data 197, 165, 253, 109, 205, 197, 133, 253 raadst = Sffb7
n

U 2460 data 165, 254, 105, 0, 133, 254, 96, 56 setlfa = Sffba

EH 2470 data 165, 253, 229, 251, 133, 81, 165, 254 setnam = Sffbd w

CH 2480 data 229, 252, 5, 81, 176, 1, 96, 101
open = SffcO

U1 2490 data 104, 16, 35, 193, 32, 168, 255, 32
close

chkin

= S£fc3

= S£fc6 ^

01 2500 data 210, 255, 96, 165, 183, 162, 0, 160

1

L chkout = 5ffc9
J

CG 251D data 2, 32, 189, 255, 169, 3, 162, 8 clrchn = Sffcc

cx 2520 data 160, 3, 32, 186, 255, 32, 192, 255 chrin = Sffcf

CG 2530 data 96, 32, 255, 195, 70, 73, 76, 69 chrout = 5ffd2

BD 2540 data 32, 78, 65, 77, 69, 58, 0, 32 atop = $ffal -

JB 2550 data 247, m, 185, 0, 2, 240, 3, 200
getin = 5ffe4 \

DE 2560 data 208, 2(8, 132,

r

183, 164, 183, 208, 5
plot , = Sff£0 '

FO 2570 data 104, 101, 76, IS, 192, «, 162, t Dot«: labels begiiming with "I'' are variables

JB 2580 data 160, 8, 131, 253, 132, 254, 96, 32 >

3 * '

and are used for backward branching only.

JO 2590 data 96, 165, 131, 122, 132, 123, 160,

CD 2600 data 96, 169, 1, 141, 201, 197, 169, org ScOOO J

Ffl 2610 data 141, 202, 197, 32, 238, 196, 169, 48
^

r

FK 2620 data 160, 3, 153, 206, 197, 136, 16, 250
start jar setpnt

. . y -

;set ramptr

GL 2630 data 238,

I

209, 197, 32, 114, 197, 165, 20
Idx to

stx endadr

atv endadr+1

;aero end address

HD 2640 data 208, 4, 165, 21, 240, 20, 173, 201

AB 2650 data 197, 197, 20, 208, 7, 173, 202, 197 stx sa ;zero load address

01 2660 data 197, 21. 240, 6, 32, 109, 196, 76 sti aa+1

FL 2670 data 38, 197, 96, 169, 234, 133, 130, 133 ,
atx S02S6 p'black for text color

IK 2660 data 131, 32, 115, 0, 32, 95, 197, 142
help Ida 115 ; color code for grey

GO 2690 data 199, 197, 32, 115, 0, 32, 95, 197
ata SdO20 ;set border color

W 2700 data 142, 2O0, 197,

r 1

173, 199, 197, 10, 10
3ta Sd021

Ida l$93

;5et background color

,'clr screen
PJ 2710 data 10, 10, 24, 109, 200, 197, 96, 162

' II ^

jar chrout

Idx 12

r

KG 2720 data 0, 221, 211, 197, 240, 248, 232, 224 h

; locate cursor

IB 2730 data 16, 208, 246, 104, 104, 104, 104, 76 Idy 112 4

FH 2740 data 176, 195, 162, 0, 134, 20, 134, 21 dc

HH 2750 data 32, 115, 0, 176, 42, 233, 47, 133]sr plot ;print menu screen

HI 2760 data 7, 165, 21, 133, 34, 165, 20, 10
jsr prim

,

LO 2770 data 33,. 31, 10,

r r

38, 34, 101, 20, 133
txt 'hex file editor' OdOdOd

txt ' »nu (c) 1987 bob Itodadek' OdOd
KN 2780 data 20, 165, 34, 101, 21, 133, 21, 6

, txt 'e-edit'Od
'

HH 2790 data 20, 38, 21, 165, 20, 101, 7, 133 tit '1-list'Od .

% 2800 data 20, 1«, 213, 230, 21, 208, 209, 96 txt 'p-print'Od

n 2810 data 32, 225, 255, 208, 5, 104, 104, 76 ¥ txt 'd-directory'Od .

JD 2820 data 35, 193, 96, 32, 174, 255, 32, 204 txt 'r-raad file'Od

I DC 2B30 data 255, 165, m. 32, 195, 255, 169, 8
tit 'w-write file'Od

FH 2B4C data 133, 136, 169, 55, 133, 1, 96,
txt 'x-disk comand'Od

txt 'l-dec to hei'Od
AE 2S5Q data 0, 0, 0, 0, 0, 8, 18, 48

txt 'S-hejt to dec'Od

KG 2860 data 48, 48, 0, 48, 49, 50, 51, 52 txt 'c-Golunns'Od

Ft 2B70 data 53, 5(, 55, 56, 57, 65, 66, 67 txt 'n-nenu'Od
1

JC 2830 data 68, 69, 70, 87, 44, 80, 14 tit 'q-exit'OO -

Transactor
,

49 July 1986: Volume 9, Issue 1

Idi 118

Idy m
clc

jar plot

jsr priiDffl

trt 'load addieaa:

Idx %n

Ida sa+1

jar printhex

Idx *19

Idy 120

clc

jar plot

jar primn

txt 'ob]9ct:5'00

Idx t<sa

Ida l>aa

jar printhex

jar prim

tit '-$'00

Idx endadr

Ida endadr+l

jar printheK

' get comoand and execute

getccoL jsr Eestora

IdA ISfO

ata SS2

Ida f$ef

eta $83

Ida t$Od

j$t chrout

Idx m
Idy 5d3

Ida 1^20

leraae sta i^dD^y

iny

bn<)era3«

Ida fy
i«£ chrout

jsr input

jsE chiget

]loop CD^ table, y

beq docojn

iny

cpy ISOc

bn« jloop

jQp getCCS

docoQ tya

ul
tai

Ida adr+l,x

ph.

Ida adi.x

!*»

table aac ' rvlexdmcjpt^c'

adr da r«ad-l

da write-

1

da list-1

da &dit-l

da diakc-l

da dir«<±-l

da help-1

da quit-1

da pliat-1

da decliex-l

da hexdec-1

da change-1

h«x 00

••* comaand routines ***

; locate cursor

S'OO

;print load addresa

;locate cursor

;print start address

;print ending addreas

;restore channels

; chiget laatorsd alvayft

;print a cr

.erase command line

;print cosnand prompt

;get input

;read character

; compare to comoand table

;if found, do it

;else, get inore

;taated all?

;not legal conoaod

;
get index into a

;iiiulitply X 2

;lo6k. up addreas

;pU5h it on stack

;iuB^ to conuuand routine

;read file

;vrit8 file

;liat to screen "

;full screen editor

jsend disk ccHumand

;iead directory

.-produce main menu

; return to basic

;list to printer

; convert decimal to hex

; convert hex to decimal

; select number of coluons

read = *

* reads prg, seq, or usr file into ram
;*, *^*-* ;input filenane

;set logical file

jsr fnave

jsr aetlog

jsr setpnt ;point to $0800

Idx ($03

jsr cbkin ;Dpen input channel

Idy ($00

]loop jsr chrin ; input character

sta {rajif»tr),y ; store in ran

jsr incpnt increment ramptr

jsr readst ;rsad status byte

sta erbyt ,'save it

cap |ti4

beg eof

,'test for eol

Ida erbyt ;teat for error

bne rderr ;read error channel
-

^np llocp

eof sta (ran^r),y ;store eof marker [$fl0)

tya ;y-0

]loop iny

sta {rai^r)rY ;and a few zero bytes

cpy 13 1

'

bne lloop
-

Ida ran^r ;B)ove rai^tr to endadr

at a endadr

Ida ranqiti-^l
Ti ^ ' -

sta endadr4l
1

rderr jar reatore ; clear channels '^

Ida Sba ;iead error channel

jar talk ; device 8 talks

Ida ISfif ;£roEii coMand channel

ata m 1

.'

jar tkaa
,

'

Ida l$0d

jsr chrout
;
print a cr

Igat jsr acptr ; input serial byte

- 0^ l$0d ;test for cr

beq enderr
-

jar chrout
;
print the byte

jap]get

enderr jar chrout
;
print the cr

jsr yntlk r'Stcp talking

jsr prrt ;pron^ "press return"

jsr chrin ;wait for <return>

jmp help ;display menu

prrt jsr priBQ
1

txt 'press return' 00

rts b

incpnt inc ramptr

bne rl

inc ramptr+1

;increjTLent ram pointer

rl rts

write = It

* writes a binary file in prg, seq, or usr format

jar prim
r

txt 'type tp/s/u):'00

jget jsr input

jsr chrget

;get user's file type

sta ftyp ;save it

jsr fnama ;get filename

Idx 1503

. ^^^F Ida Hi,x

Bta bufry ; append file type

iny

dex

bpl]loop p

sty flen ;flet file length

jar setlog ;Bet up logical file

Idx l$03 b

jsr chkout ;open output channel

jar setpnt ;point to start ($0300)

Ida t$36 ; basic rcais out

ata $01

)loop Ida ranptr

anp endadr

;teat for end

bne vl f-

Ida lan^Jtr-fl ||.

r

Transactor SO July 1986: Volume 9, Issue 1

dp endadr+I Ida i$60

beq .^2 sta 5t9

vl Idy t$00 jsr $f3d5

Ida (rai^r},y ,get ram byte Ida $ba ; device S talks

jsr ciout ; output byte jsr talk

jsr incpnt ;increiient raoptr Ida fb9

j:^ loop
1

jsr tksa

2 JB^ rderr
1

;read error channel

r

Ida |$00

sta S90

;clear status byte

plist =:
*

. Idy im
* lists to screen and printer 9«t sty Sb7

Ida 14 jset device to |4 jsr acptr ;get 1 bloclis in file

sts $ba sta $c3 ;save low byte

jsr listen ;printer listens jsr acptr

Ida t$eO sta $c4 ; and high byte

sta $b9
h

Idy 590 ;test status byte
n

jsr second [Secondary address bne dout rif not then exit

jsr priJDD ;proB5>t "ready?" - Idy 5b7

dfb 13
n

dey

tit 'ready? '00
1

1

bne get
J —

,

L
jsr prrt

Ida ISOd

.prompt "press return''

-n

Idi Sc3

Ida $c4

'

II r

jsr senchr

i

;
print a cr

jsr 5bdcd ;print t blocks

]loop jsr ckstop

jsr Sffe4

;tflst stop key

;Mait for <retum>

Ida 1520

jar chrout

; print a space

#

c^>ISOd

bne loop

•i

]loop jsr acptr

Idx $90

bne dout

;r«ad filename

;test status
L

list = t
t

'

cD^ t500 ;test for new line
'

* list to screen and a listener, if oresent
", beq newln

jsr calcln .calculate line number

1

jsr chrout ;print a character

Hoop

wait

J

jar ckatop

jsr line

Ida 653

;chec}i stop key

; output line

;check shift key status

jsr stop

beq dout

jsr getin

beq jloop

ca^ l$20

;test stop key

;get keypress

1

1

1

a^ m
beq wait

jsr incln

j^ loop

;fieeze listing if active

^
;test for space bar -.

;increment line nuEiber

;do more
l«it

bne loop

jsr getin

beq jvait

; freeze if pressed

;wait for keypress

disltc =

* sends

*
bne loop ;continue listing

user cooaand to drive
newln Ida f$Od

jsr chrout

;print cr V

jsr prim

txt 'c<»miand:'00

jsr input

;proi^t user

;get cocnaand
dout

Idy fS02

bne get

jsr Sf642

;go do more

;restore channels
Ida $ba

jsr listen

;device 3 listerts
4-

file

jmp getcoD

asc 'S'

p'Dext connand 1

Ida »$ef ;coiinand channel
^^ ™ T

X 1

sta $b4
1 edit = t

-

jsr second
u ^ ^ ^

1

* full screen editor routinti

-

Idy 1500
jsr calcln ;calculdte line nujnber

1

]l047 Ida buf.y

beq dl

,read input buffer
el Ida ISOd

jsr chrout

;
print a cr

jsr ciout ;3end coniiand string ^

jar line
;
print the line t

Any '

Idy 1134 1

bne]loop]loopl Ida il57 ; reposition cursor .

dl JEUp rderr ;read error channel

JT

jsr chrout

dey
quit = t

bpl]loopl
* routine to &tit back to basio Ida f$00 ; input screen line

jsr prinnn ,'proH^ tay .

db 13]get jar SflSd 1
'

txt 'exit? (y/n)'00 CD^ ISOd

Uoop jsr getin ;get]cey beq gl

d? t'n'
\ sta buf.y ;save in buffer

beqql iny
-

apl'f
I.

bne Iget

bne jloop
J

gi Idx ISff .point chrget to buf

jn^ 64738 ;sy3tm reset Idy 1501

qi jmp help ;or return to menu stx S7a

sty S7b \ ^

direct - * jsr calcln ;read line nunber

* displays directory from current drive jsr chrgot ;get last char read _

Ida ISDl ; setup filenaine "S" ,
a^ 1'-' ;c<Mpare to "-"

h

Idx t<fU<
1 bne nothex :exit if not

h

Idy t>fila 1 Idy ISOO
-^

jsr setnam lloop2 jsr edhex .editor hex asc to binary
-

Transacfor 51 July T968: Volume?, Issue 1

sta buffer, y ;aave binary jsr senchr ;send line number

1
1 ^B ^m

jsr chrget ;get next character iny

cpy col

bne
J
loop

;last colunn? 11 Ida t'-'

baq skip ;then alcip test jar senchr

It^lO
cmp #$20 ;else, must be a space

L

1

b«q]loop2

nothw Ida t'?' :data error! ejut Ijloop

sty cnt

Ida (ra]^r)ry

;£Bro counter

;read binary in ram

jsr chrout

jD^ getcoB »

* if no errors, now stor* the data in ram

jsr prbyte

Ida ftS20

jsr senchr

inc cnt

; output aa hex

; output space

; increment counter
sJcip Xdy fv

]lD0p3 Ida buffer^ ;get binary value Idy cnt

cpy col

bne Ijloop

;coji{)are to icoluaina

Bta (rai^r)ry

iaj

cpy col

bDB loop3

: store it in run
i

.

;done all columns?
Ida l$Od

jsr senchr

rts

; output cr

jsr incln ; increnert line number
-

noi
* output hex string from twc) byte integer

hexdep - '
printhei jar prbyte ;

print a reg

' outputs decimal from ascii bexadecimal input

jsr xdhex ;get high byte

tay ;WT« it

prbyte

txa

pha

l>r

llE

;
print x reg

;save a

;shift high nibble down

jsr rdhex ;get low byte
Isr

tai Isr

jsr Sbdcd ;print in deciroal
- b

jsr phex

pla

;
print it

;pull original byte
jii^ getc^ ;Dext comnarLd

prnib

phex

and tSOf

ora tS30

;mask low nibble

dechex = *

* outputs haxadecunal nui^r froa ascii decimal input

4

cap i;3a

bit jco

;decimal digit?

;branch if so

jsr ascint ;a9C to integer
adc t6 ;add offset for hex

Ida 1'$'
;
print T

jco jsr senchr
jsr chrout

rts
Idi $14 ;get loH byte integer *

Ida $15 ;then high byte
inc In Idx t$03 ; increments line number

jsr printhex ;output number in hex
lloop inc linum,x -

1 yap q^tcm ;get nert command
•

Ida linum.x

csEp l$3a y
1

change = ' "

bne inl +

* uaer sets nujter of columns displayed (6-llj Ida 1930

jsr ascint ;a8C to integer sta linuOrX ^

Ida $U ;get loH byte dex

asf t$06 ;<6 columns? t^l lloop

bcc chl ;then exit inl inc Inum

cinp 412 ;=>12 colimna? bne in2

n

bcs chl ;also exit inc lnum+1 ll

sta col ; store if 6-11
in2 Ida raiptr ; update ram pointer

chl yap getCQo ;get next command adc col

sta ramptr

1
ttfrtikitittt*itt**jr subroutines <**'****»**'***

1 '

Ida rai^tr+1
J '

<

1

adc t$00

* c-64 print iJisediate routine allows ijnbedded string sta ran^r+L
-

prijim pla ;reiiova return address rts .

sta S22 ;save it as current pc

pla tatend sec ;test for highest address

ata $23 . Ida ramptr ;double-byte cor^arison

bne nxtchar ;branch always sbc endadr
1

pchr jar chrout
H

sta teo^

nxtcbar Idy 10 h Ida rai^r+l - ''

inc $22 ; increment position sbc endadrtl

bne nc
'

ora ten^

inc $23 #
bcs tal ;stop if greater

1
nc Ida ($22),

y

;get text rta ;else ok

\ bne pchr ;print until ISOO tal pla

Ida 523 ,new return address \ pla V

pha
X / JB^ getcon

^

Ida $22
-

^^
-i

- pha
-

senchr jsr clout ;aBnd byte to listener

rta ;get next instruction jsr chrout

Tta

;send byte to screen

'
1

* outputs line to current channel or listener

lliB 1

**

line jar tstend ;taBt for last line setlog Ida flen ;ppen logical file

Idy ISOO Idx JISOO
ri

lloop Ida linun,y Idy 1502
1

beq 11 jar aetnam
'

Transactor 52 July 1986: Volume 9, Issue 1

fflIM

Jloop

out

fl

setpnt

Isput

Ida l$03 y

idx i$oe

Idy *S03

jsr setlfs

jsr 0p«n

ct»

jar prun ;prcn^

txt 'file najDe;'00

jar input ;gat file name

Ida buf,y ;9et length

beq out

i^
"

bofl |loq>

sty flan ;sav< it

Idy fl8D ;test for no £il« naoe

bne fl

pU
pla

jmp h«lp -

*u
,

Idx l<sa ;reaet r&in pointer

Idy l>$a

stx raofitr -

sty raofitr^l -

Itt
J

jar Sa560

r

,'gst user input

stx $la
;
point chrget

sty $Tb

Idy to
-

m
* this routine translates an ascii line nunb&r into

* the needed location in ran and sets the pointer

* (ran^tr) accordingly through incln.

calcln

lloop

call

cU2

cal3

Ida im
sta Inun

Ida t;00

sta kunil

jsr setpnt

Ida f$30

Idy 1503

ata linunj

*r
bpl lloop

inc linuii+3

jar aacint

Ida 514

bne call

IdA 515

beq cal3

Ida Inua

cn^ 5U
bne cal2

Ida lnun+1

aap 515

beq can
jar incin

jn^ call

rts

r'sat integer licet to 1

;set rasptr to 5OS00

;set asc linel to 0001

;gflt integer

;
greater than 0?

;ye», continue

;el3e, exit

;get line number

;teat low byte

isaiu?

[test high byte

; increment t £ build string

* this routine translates ascii hex into binary, the

* first entry point nodifies the chrget routine to

* accept space cbaractera for the acreen editor.

edhex Ida l$ea r'nodify chrget for edit

sta S&2 ; store tvo nop instr.

sta 583
^

rdhex jar chrget ;get ascii character

jsr tsthex ;teat for hex

st£ hexl ; store it

jsr chrget ;get aaxt char.

jar tsthex ;test for hex

stx haxlil ; store it

Idaheil ;get first value

ul ;iiultiply by 16

ul

Transactor

asl \

asl

clc ; add second value

adc hexl+1 ; now ve have binary

gothex rts

tsthex Idx 4S00 ;:test for hex 0-f

lloc^ QEp hex.x coiqiare to table

beq gothex : x rag returns 0-15

inx ; elae^ do more

cpx |$10 ; any sore left?

bne]loop ; not found

pla

pla i
pull 2 addresses

pla

pla

hi

ji^ nothex report error!

* this routine converts ascii into a two-byte integer

* aa in the basic roo routine^ but handles 0-65535.

ascint Idx tsoo

atx $14

stx $15

)loop jsr chrget get aac character

bcs asl ' '
set vhen not asc nuneric

sbc t$2f includes carry

.
sta $07 save remainder (0-9)

1
Ida $15 build t¥0 byte integer

ata SZ2 ten^ area
1

Ida $14

asl

rol $22

asl

rol $22 _ 1 1

adc $14

sta $14

Ida $22

adc S15

H

sta $15 /

asl $14

t
rol $15

Ida $14

adc $07

sta $14 V

bcc Jloop

inc 515
'

% bne Jloop j' '

aal rta

ckstop jsr stop :stop key pressed?

bne nostop :if not, then continue

pla :elae remove return

pla ;address fron stack
1

jD^ getcom rand junp to c<Himand

nostop rts
T

: routine.

restore jsr unlsn [unlisten device

jsr clrchn ; clear channel

a

Ida 5bS :get file nui^r

jar cloM , :Glo8e logical file

Ida t$Oa :set device to 8

ata $ba
-

-

Ida t$3T ^
.

ata 501

[basic rod's in

rts ^

hixl ds 2 ; storage

InuD da 2 ;holda line nuiber

cnt ds 1 i counter

erbyt ds 1 ;holda status byte

col db S ; holds t colunns

linuDi asc '0000 '00 ;asc line f

hex asc 'D1234567B9' I

asc 'abcdef
^

vr asc 'v/ rfile direction

ftyp asc 'p/ ;file type

V f

53 July 1986: Volume 9, Issue 1

^

by Adrian Peppor

Adrian actually sent this article to ns as a letter, hut rather

than risk it possibly being overlooked in the midst of the Let-

ters section, we have decided to present it in this form. The

programs he refers to near the end of the article mil be in-

cluded on the Transactor disk for this issue.

I have been an avid reader of Transactor for several years, and

find it the most informative magazine around for serious users

of Commodore computers. I was especially glad to see two ar-

ticles directly relating to the user of the Power C compiler and

environment in Volume 8, Issue 5. Unless playing a game, my

Commodore 64 spends most of its lime running in this envi-

ronment. (I may be a serious user, but Tm not dour)

The explanation of the object file format used by Power C was

especially good. Both articles, however, show what a lack of

communication there can bt in the hobbyist computing field.

Library Maintenance and Compatible Assembly

First. "Maintaining the Power C Library", by Eric Giguere.

while a very precise, well written article, actually describes a

BASIC program that duplicates the functionality of an existing

C program, "libx", which is included in source form on the

Power C distribution disk! It can easily be compiled and used

within the Power C Shell, obviating the need for flipping be-

tween the Power C and BASIC environments. Perhaps for some

readers, though, the basic version is more meaningful. And,

although 1 like C, I must admit a useful C program does not

fill pages as efficiently as the equivalent basic.

Second, David GodshalPs "The Link Between C and Assem-

bly'' verifies and documents in one place several things 1 had

run across before, and fills in a few details I wasn't sure about.

But David^s wish has been granted! For well over a year now,

C/ASSM Revision 2.0 has been available, It*s a public domain C

program, from Mark R. Rinfret of Portsmouth, RI, and Ray L,

Zarling. of Turlock, CA, that was derived from a PD generic

6502 assembler contributed to USENET by J.H. van Omum of

AT&T Bell Laboratories. Mark Rinfret and Ray Zariing added

the necessary "back-end" to generate Power C object files.

The progam and source are available on the Pro-Line Power C

BBS, as "cassm,arc". Another program, "ra'\ for "Reverse

Assembler", is also available there; it translates Power C ob-

ject files into source (almost) suitable for this assembler.

Now, however, Spinnaker {who market Power C) are selling a

different assembler package. Power Assembler, which is very

good and produces Power C compatible object files. It is as

reasonably priced as Power C itself ($40-60 Cdn. in Toronto).

Character Promotion

There is also at least one technical error in David's article.

Many people do not understand that expressions in the C lan-

guage involving character variables (chars) are actually inte-

ger expressions. When a char is used in an expression, it is im-

plicitly "promoted'* (lengthened) to an integer [1]. All param-

eters in the parameter list for a function call are expressions.

Therefore, a call to a function using a char as a parameter will

actually pass the equivalent int (with a zero high byte in Power

C, a signed extension in most other implementations [21).

Therefore in the sample call given. FRED's Age would actual-

ly be passed as two bytes, similar to the Height and Name,

Don't underestimate how misunderstood this is. Even eariy

versions of Power C (C Power) got it wrong! When a formal

parameter was declared as char, the compiler got confused as

to whether it was getting one byte or two, and generated in-

consistent code [2]. This was fixed in the later releases-|31

Many authorities on C programming style strongly discourage

declaring formal parameters as type char, because it is inaccu-

rate [31 The compiler is supposed to know that it will actually

be an int. Although it is changing, current standard versions of

C provide no means for the intended type of a function param-

eter to be determined when the code for the function call is

generated. Those int (even if they only involved a single char)

expressions, therefore, would have to be assumed to be ints at

the calling end. Discussion about this point raged for a good

month on the Power C BBS about a year ago.

Function calls as parameters

Another apparent error may have been an intentional simplifi-

cation on the part of the author. It is not correct to say that the

value passed to a Power C function in the accumulator is al-

Transactor 54 July 1968; Volume 9, Issue 1

ways the number of bytes of arguments passed. Another value

is also passed to the function. This is placed on the Power C
runtime stack, the top of which is pointed to by ($la,$lb).

This value is the offset into the cassette buffer where the func-

tion's parameter list begins, and where the return value should

be put. In most cases, this offset is zero, but if a function call

is a parameter to another function, this offset will be non-zero.

'cSfunciinit* will pop this value off the C slack, and place it in-

to the X register, where it can easily be used to access the cor-

rect area of the cassette buffer. The value passed in the accu-

mulator is actually the upper bound of this area. (That is, the

number of bytes in the parameter list, plus the offset of the

start-) When the offset is zero, this value is obviously the same

as the number of bytes in the parameter list. This is the general

case, especially if the functions defined are "routines*', rather

than functions returning a useful value. When a function does

return a value, this convention arranges that the return value of

one function is already set up to be used as a parameter for the

next.

f

Another observation has bothered me for some time. Perhaps

it is unfair lo single out David's routines, but they have

brought it to mind. David's function "Slowkeys*' is suppos-

edly a general -purpose routine, but it makes a subtle assump-

tion about its environment. It does an SEI, because it wants to

inhibit interrupts, but then blithely does a Cli afterwards.

Would not the following sequence be preferable: php; sei;

[codel; pip? The pip at the end restores the previous state of

the interrupt flag, rather than simply clearing it. This way if

someone happened to call "Slowkeys'' with interrupts already

inhibited for some purpose, it wouldn't have an unexpected

side effect for them! Not to worry too much. Even the C64

Kernal niiikes the assumption in several places that the calling

routine doesn't have interrupts already inhibited.

h

Using an REU with Power C

Acoupleof quick tips for 1764 RAM disk users. The 1764 does

not work with all of Power C in its standard distribution form,

but it does speed a lot of things up. making the environment a

lot more pleasant.

First 1764 tip: Don't you find it annoying when you are run-

ning a disk intensive program, using the RAM disk instead of a

real disk drive? Your machine just sits there. Silently. Doing

who knows what? Looping? Crashing? Locking up? 'if only I

could hear that disk!", you think. Well, just poke a volume

value into the siu chip before you start the ram disk activity

and, lo and behold, you would swear at times you have a very

quiet (but audible) hard disk at work for you! The sounds

seem clearer after I have been playing with my music program

(also written in Power C), but I haven't really analyzed the

correlations. This works on my setup; I don't know if it will

work in general. It is possible that it is partly interference with

the monitor (lines output to the screen also seem to cause

'chirping' - though I suspect RAM gets swapped in for every

CHKIN/CHKOUT). The address to poke is $d418 (54296) and 15

(maximum volume) is a good value to put there.

Another tip is a little less offbeat. 1 sometimes used to worry

about which of my ram disk files I had and had not saved to a

real, live floppy! But then I noticed something, 1 never 're-

place' a file on the RAM disk (using @), but always rename the

old, then save the new, scratching the old one later when I feel

safer. Well, it seems the 1764 ramdos doesn*t create ^holes' in

its directory when deleting files; thus the most recently

changed files are always at the bottom of the directory listing.

So, I took to creating a file named " " as the last

fde 1 transferred to my RAM disk in my startup procedure. Any
files I modify end up below this 'bar', indicating they should

be saved. From time to time 1 'move* the bar to the bottom

with a rename, copy, rename, delete sequence when I am sure

1 have properly archived everything so far.

Another question regarding the 1764 (and the RAMDOS provid-

ed with it), is there anywhere to find a concrete list of known

problems? Everyone hints at bugs, but it might be nice to have

a verified list somewhere. My own worst observation, on ram-

dos 3.3, regards a simple-minded attempt to gel around the

lack of support for the concatenation option of the DOS copy

command. I wrote an (admittedly inefficient) one-character-at-

a-time CHKLN/CHRIN CHKOUT/CHROLFT loop, and it substituted

an incorrect character in the output every 256th character.

When 1 changed it to a buffered loop (254 reads, 254 writes),

the bug disappeared. Both programs worked correctly with a

real disk drive. It smells like a subtle hardware/software tim-

ing bug, but it really needs confirming on someone else's

hardware. There seem to be few 1764s in the stores around

town, and owners seem less disposed to investigating such

things than they were at one time, anyway.

I have written some examples to demonstrate the problem. The

''concat.a*' program works with a 1764, the "badcat.a'*

should, but does not. They need assembling with the C/ASSM

assembler, and linking with the Power C linker to run in the

Power C Shell environment. The principles they illustrate are

quite simple, however, and it should be easy to convert them

to use a different assembler, should anyone be so inclined.
4

J

"fred.*" are alt programs that do nothing, I wrote "*fred.c",

and disassembled it in different ways (before and after linking)

to illustrate how the Power C calling sequence works for nest-

ed function calls, "fred.a" is straight ram disassembly,

''fred.doc'' has comments added to explain the code.

References

[I] The C Programming Language^ Kernighan, B.W. and

Ritchie, D.M., Prentice-Hall, 1978, p.l83.

h

J

[2] The language definition specifies that this detail is imple-

mentation dependent. '* Whether or not sign-extension occurs

for characters is machine dependent, but it is guaranteed that a

member of the standard character set is non-negative." Ibid,

p. 1 83.

[3] Ibid. pp. 39-40, for example.
' '

Transactor 55 July T9fi6: Volume 9, Is5ue 1

Programming in GEOS

Entering the geoSphere...

h h

b> Francis G. Kostella

Francis G. Kostella is the author of the CIRCE strategy game,

which runs under GEOS. He can he reached via CompuServe

E-Mail (72220JII7) or on Q^Link as FGK. '.
'III-

GEOS is the first alternate operating system for the C64 that

has gained any widespread acceptance. The C64 Kernal is fa-

miliar to assembly programmers but, unlike the C64 Kernal,

the GEOS Kernal has not been widely documented and com-

mented upon (see the references at the end of this article). This

article will present enough information for the novice GEOS

programmer to start programming in the GEOS environment,

and a sample program that illustrates a few of GEOS^s features.

The examples here were developed and tested using GEOS vl.2

and the Commodore MADS assembler with Bill Dixon^s source

editor and "assemfix" upgrade. The label names used below

are are in upper case for clarity and are very similar to the

standard BSW (Berkeley Softworks) labeU. [Mr. Kostdia's

source file contained labels of up to 12 characters. To simplify

matters for users of other assemblers, the source has been

converted to PAL format with six-character labels. The labels

used were taken from Alex Boyce's Tech Manual and wilh ift

all likelihood, he used in future GEOS programs published in

Transactor. The original source file will be included on the

Transactor diskfor this issue. -Edf

Getting started

The first hurdle is that all geos disk files have a different

structure Ihan Ihat used by the Commodore DOS. This becomes

obvious upon examining a directory entry on a GEOS disk.

Sample Directory Entry

$00

S06
$0e

$16

_ ^ c3 05 08 54 65 73

74 20 46 69 6c 65 aO aO

aO aO aO aO aO 05 00 00

06 57 Oa 11 Of le la 00

tES
T fILE

+ *

YouMI notice that GEOS not only makes use of the formerly un-

used bytes, but also changes a few around to suit itself (see Ta

ble 1). Also note thai because of these changes, rel files are

not allowed under geos.

. __ *

- TABLE li FORMAT OF A GECS DIRECTORY ENTRY "

* *

*
*

OFFSET INTO " *

' DIR ENTRY DESCRIPTION "

. . - ^

* Commodore DOS file type ^ *

1-2 If GEOS SEQ - points to track 6 sector •

» of file's Ist bloclc. '

* IE GEOS VLIR - points to track & *

* sector of VLIR ind^x table block. •

,
3-lfl 16 ctiar ASCII filenamex padded. •

* 19-20 Points to File Header's track & sector *'

*
^ ^

^21 GEOS File Sttuoture. 0-SEQ 1=VLIR

* 22 GEOS File Type (see below)

.

'

' 23-^7 Last used: yea c/irionth/ day/ hour /minute- *

* 2S-29 Blocks ill file *

' GEOS FILE TYPES
'

^
'

'

. •

* - not GEOS '^ - application data *

^ 1 - basic e - forit

* 2 - assembly |, ,
9 - printer driver *

* 3 - data 10 - Input driver *

* 4 - system file 11 - disk drive *

* 5 - desk accessory 12 - system boot *

* 6 - application 13 - temporary *

. — - "

I

The filename is stored in ASCII (thus the case of the characters

appears inverted); PETSCH is not used in the GEOS system. Al-

so, every GEOS file is of the C64 USR type, that is, the internal

structure is user-determined.

The time and dace are stamped into the 5 bytes before the

block count (last 2 bytes). Bytes !9 and 20 point to the file's

Header Block. Every geos program has a Header Block - a

single sector, not directly connected to the file - that holds

GEOS-specific information (the most important being the icon

definition, the load address and the start address). An example

Hejider Block is included in Program 2.

Transactor 56 July 19d8: Volume 9, Issue 1

Probably the Iwo most important of the extra bytes are bytes

21 and 22. These describe the GEOS file structure, and lell the

Kemal what type of file it is. Byte 21, the File Structure Byte,

is if the file structure is sequential; that is, the file is stored

sequentially on disk, as a PRG file would be. Unlike a PRO file,

though, the load address, if any, is not stored as the first two

bytes, but in the Header Block. The example program will be

in sequential form.

When byte 21 is 1, the file structure is vlir (Variable Length

Indexed Record). Although the use of VLIR files is beyond the

scope of this article, a few facts will help you explore their

structure in more detail. When the file is of vl[R type, bytes I

and 2 will not point to the file per se, but to a single-sector

record index. The first two bytes of this index sector are al-

ways $00 and $ff, and the following 254 bytes are pairs of

pointers to individual records. If a record's pointers are

$00,$ff, then that record does not exist. A VLIR file may have

up to 127 records (0-126). Each record is structured sequen-

tially and may be any length. For example, a font file's index

contains pointers to its various point sizes (0-48). So, if bytes

14 and 15 point to a valid track and sector, then they always

point to the 6-point record.

As long as we structure our object file properly. GEOS will rec-

ognize it as a valid file when translated. Specifically, the

Header Block has to be assembled at the beginning of the file,

exactly 252 bytes before the beginning of our application code

(remember, PRG files save the load address as the first two

bytes, and they use 254 bytes per sector.)

Main loop

In its basic form, a geos application will usually consist of an

initialization routine, a set of data tables, and a set of service

routines. When our application is loaded, the Kemal will JSR

to the start address held in the Header Block (bytes 75 and 76).

This address will point to our initialization code, which will

usually be called once to create menus, icons, graphics, and so

on, all of which are defined by a set of data tables. The initial-

ization code terminates with an rts, which returns to the Ker-

nafs MAIN LOOP. The main loop just checks for user input and

watches a set of IRQ process timers. If the user clicks on an

icon, MAIN LOOP determines which icon was selected and calls

the service routine associated with that icon. The service rou-

tine performs whatever action is required and then returns to

MAIN LOOP.
"

Byte 22 of the directory entry is the geos file type (see Table

1)» which should be familiar to the GEOS user. This byte tells

the Kernal where and how to load a file. In this article weMl be

writing a simple application that we can call from the Desk

Top» and are thus concerned only with value 6, a GEOS Appli-

cation. When the Kemal loads an application-type file, it will

load it in place of the Desk Top and JSR to the start address

given in the Header Block.

The important thing to understand is that, in essence, we only

have to write a set of subroutines, since all of our basic func-

tions {IRQ, character printing, math, disk, graphics, etc.) are al-

ready there. Our code doesn't do anything until the user per-

forms some action (or one of the processes times out).

At this point a few examples may make things clearer, but first

a word about GEOS routines, variables, and constants.

The reason for delving into the file structure is that most (if

not all) assemblers do no/ output GEOS applications, but pro-

duce "binary" or object files. If we want to have our code run

under the GEOS Kemal, we need a method of translating a

standard object file to GEOS format. Thus, Program I, "make-

togeos".

Translating to GEOS

The process that ''maketogeos'" will go through to translate

our file is as follows:

• find the file's directory entry

• make block I the Header Block, separating it from the pro-

gram by saving the next track and sector pointers and

changing them to $00,ff (end of file, $ff is last byte).

• change the filers load address into the icon dimensions (see

the Header Block in Program 2).

put the track and sector of this block into bytes 1 9 and 20 of

the directory entry.

put the previously saved track and sector pointers to block 2

into bytes I and 2 of the directory entry. This block is now
the beginning of the file.

• Now write the new geos info to the directory entry,

prompting for date and time.

The GEOS Programmer's Reference Guide (see the references)

lists over 600 constants, 200 variables, and over 150 routines

(called via a jump table at $CT00-C2D5), Quite a bit to work

with! Documenting even just the routines would fill many
pages, but here we'll be concerned with just a few of them.

The applicable constants' labels are not used in most of the in-

cluded source code, but are explained in the comments. The
variables are listed where they're introduced, with the excep-

tion of the zero-page registers. The Kernal routines make use

of 16 two-byte pseudo-registers labeled RO to Ri5, starting at

bytes $02/03 (RO) and ending at bytes S20/21 (ri5). Additionally,

there are ten pseudo-registers not used by the Kemal, reserved

for application use only. These are labeled AO to a9. ao is at

SFB/FC, Al is at SFD/FE, and the rest start at S70/7I (A2) and con-

tinue sequentially to S7E/7F (a9).

Menus

Most applications will want a menu, and this is a good place to

start experimenting with GEOS" code structure.

Our initialization code will inform the Kemal that we are us-

ing a menu by placing the address of the menu definition table

into pseudo-register RO and calling the routine DOMENU. Let's

look at an example:

Transactor 57 Jufy 1968: Volume 9. Issue 1

Idx <#OURMENU ;lo

Idy >#OURMENU ;hi

stx RO
sty RO-M

Ida #1 ; leave pointer at this choice

jsr DOMENU

The Kemal now expects to find a table at address ourmenu

defining the menu structure. After drawing ihe menu, it will

leave ihe mouse pointer on selection one (the second one). The

first section of the menu table tells it where the menu is locat-

ed on the hi-res screen, what type of menu it is and how many

selections it displays. Our table might start like this;

OURMENU =*

,byte SOO

,byte $0f

.word $00

.word S60

.byte 502

;top
; bottom
;left
; right
/type/items

The first four entries describe the outer borders of the menu,

the origin of the hi-res screen being the upper left comer. The

last byte is Ihe number oi menu items ORed with the menu

type. The above example describes a horizontal menu with

two items. There are three types of menus (it may be helpful to

think of them by the bits they set):

$00 horizontal

$80 vertical

$40 constrains pointer to menu

Following this position table wiU be a selection table, one for

each item. Immediately following the example above, our two

selections might be:

.word SITEXT

.byte 128

.word SlI^ENU

.word S2TEXT

,byte
.word S2RTN

;addr of text

; sub-menu
;addr of submenu
;addr of text

;menu action
; addr of rtn

The first entry of each table holds the address of a null-

terminated ASCii text siring that appears in the menu bar for

thai selection. The third table entry holds the address of the

routine (or sub-menu table) that is called when that selection is

chosen. The middle byte describes whal to do when that item

is selected:

$80 calls a submenu

$00 calls a service routine

$40 calls routine before displaying submenu; the routine

exits with the submenu table address in RO.

Quite often, our main menu will call submenus. A submenu is

set up with ihe same lype of tables we have just shown, first

the position/type/number then the individual entries. We can

nest menus down four levels. Eventually, we'll want to call a

service routine and/or roll up the menus displayed. We have

three possibilities: redomenu, doprev[OUSMENU, and

GOTOFIRSTMENU. Respectively, these re-enable the current

menu, go back one level, and go to the first. Using our exam-

ple service routine above:

SIRTN =*
^

_

jsr REDOMENU ;any of the three

. . . our service routine . .

.

rts ;back to main loop
rr

When the menu is rolled up, the screen is recovered, so we

usually want to use one of the three routines before changing

the screen. Otherwise, if you were to print text where the

menu was, it would be destroyed by the old screen.

I
.

A bit about graphics

GEOS uses two 8000-byte hi-res screens to display all text and

graphics. The main screen is at SAOOO, and the secondary

screen is at $6000, Our application code space is from $0400 to

S5FFF, and we may optionally use the second screen for code.

As mentioned above, GEOS has the ability to recover previous-

ly drawn graphics to its main hi-res screen. We'll not explain

the process, but only mention that properly exiting the service

routines for menus and dialog boxes will auromatically recov-

er anything that these structures may have overwritten.

We'll illustrate a few of the graphics routines shortly, but first

we have to look at the formats used by GEOS to store graphic

information for icons and bitmaps. Compacting graphic data

saves code and disk space, not to mention disk access time.

GEOS uses three different compaction formats; all three com-

paci and uncompaci scan lines, not the character cells typically

used in C64 graphics. (Be aware that if you do any digging

through GEOS data files, youMI find that vi.iR geoPaint docu-

ments do store their data compacted into character cells, but

fhat Photo Scraps and Photo Albums use scan lines. All com-

pact their colour data immediately following the individual

bitmaps.) *

All three formats consist of a count byte followed by one or

more data byies. These couNT/data groups arc repeated until

the entire bitmap graphic is described.

Count

000-127
128-220

221-255

Description

Repeat next byte COUNT times.

First subtract 12 8; that gives

the number of following bytes to

use once each.

First subtract 219; that gives

the number of bytes in the pat-

tern following the 2nd byte. The

second byte tells how many times

Transactor &8 July 1988: Volume 9, Issue 1

the pattern is repeated. The pattern
starts with the 3rd byte and is made
up of the other two formats.

If that seems obscure, don*t worry - we'll only use ihe first

two formats in the examples here. ^ ^V

A few drawing commands i

To draw a line between two points we call the routine DRAW-

LINE, Before calling the routine we need to put the coordinates

of our endpoinls into the pseudo-registers:

R3

Rll(Iobyte)

R4
Rn+I(hibyte)

xl (0-319)

yl (0-199)

x2 (0-319)

y2 (0-199)

ff the carry flag is set when calling drawline, the line is

drawn in the foreground colour: if it's cleat the line is drawn

in the background colour. Setting the sign flag recovers the

bits from the secondary screen (and ignores the carry flag);

clearing this flag draws on the main hi-res screen.

We draw a .single poin(by calling the routine drawpoint. The

X value is put into R3, and the y value is put into (he low byte

of Rll. The carry and sign flags operate the same as they do

for DRAWLINE.

The RECTANGLE routine draws a solid rectangle using one of

the Kema! fill patterns set by the routine setpattern.

FRAMERECTANGLE draws the outline of a rectangle using a pat-

tern byte that describes the bits in the line (SFF, %niiiiii

would be a solid line, $55 is the pattern %oioioiOi.) rectangle

and FRAMERECTANGLE expect the borders of the area to be de-

scribed in these pseudo-registers:

R3 left (0-319)

R4 right (0-319)

R2 (lobyte) top (0- 1 99)

R2+1 (hibyte) bottom (0-199)

The pattern byte for FRAMERECTANGLE is held in ,a before the

call is made. The following example draws a 100 by 100 bit

rectangle in fill pattern 2, and puts a solid frame around iL

WeMl use the "inline-pass" form of RECTANGLE:

Ida #2

jsr SETPATTERN
jsr I-RECTANGLE
.byte 2

.byte 120

.word 4 5

.word 145

the borders

;50% 'stipple'

; inline call
;top
; bottom
;left
,- right

for the frame are

still held in R2-4, so...
Ida $ff ;solid
jsr FRAMERECTANGLE

We'll mention just one more graphic command before moving

on. BiTMAPUP allows us to display a compacted bitmap on the

hi-res screen. This routine also has an inline form, which we'll

use in this example thai puts a 40 by 40 bitmap in the upper

left comer:

jsr I-BITMAPUP ;inline call
-word YOURBITMAP ; address
•byte ;x pos in bytes

' -byte ;y pos in pixels
byte 5 ;bitmap width in bytes
>byte 40 /bitmap height in pixels

You might be wondering what usefulness ihis call would have,

if you don't have a compacted bitmap handy (at least not in

.byte definitions for your assembler), A simple technique is to

steal graphics from Photo Scraps, Photo Scraps are stored se-

quentially on disk and are already compacted. All we have to

do is read in the data from the LfSR file and convert the bytes to

hex (or any form our assembler can use). Or we might just

tack a copy of the file on at the end of our code (being careful

with labelling our bitmap's address). Remember that the

colour data is compacted at the end of the bitmap.

Icons

In some ways, icons are easier to program than are menus. On-

ce again, we need to pui the address into RO, and call our set-

up routine. This will be partof our initialization code:

Idx <#OURICONS ;lo

Idy >#OURICONS ;hi

stx RO

sty RO-fl

jsr DOICOHS

Again, the Kemal expects to find a table defining the icons at

address OURICONS, It is importantly to remember that every

application must have at least one icon; it may be invisible and

it may do nothing, but it must be defined or strange things will

happen. The example code shows how to define a "dummy'

icon.

The first part of our icon table is very simple:

OURICONS =*

-byte 2

' .word 10

•byte 10

/number of icons
; X pos . mouse

;y pos . mouse

This tells the Kemal that we>e defining two icons, and to

leave the mouse pointer at position 10,10 on the hi-res secreen.

Now it's lime for the individual icon entries. FoUowing the ex-

ample above:

.word ICONOGRAFIC ; addr of bitmap
byte 35 /horizontal byte
.byte 160

.
/vertical pixel

Transactor 59 July 1988: Volume 9Jssue 1

.byte 2

,bYte 8 '

.word ICONORTN

;bytes wide
/pixels high
; addr of srvc rtn

.word ICONIGRAFIC ;bitmap addr

.byte 5

,byte 20

.byte 4

.byte 16

/horizontal byte
/vertical pixel
/bytes wide
/pixels high

word ICONIRTN ; addr of service rtn

h

The first entry in each icon*s table holds ihe address of the

icon's graphic data, stored in the compaction formats outlined

above (see the source code and the section on dialog boxes for

a simple example). The second entry holds a value from to

39, and indicates, in bytes, the distance from the left of Jhe

screen to the starting position of the icon's picture. (Think of

them as character cells: each byte equals 8 pixels. The left

edge of an icon, as far as Tve been able to determine, always

begins on a cell boundary.) The third entry is the number (0-

199) of pixels (or scan lines) down to draw the graphic. Using

the example above, icon would appear in the lower right area

of the screen, and icon 1 would appear in the upper left area.

The fourth entry is the width of the icon graphic in bytes, the

fifth entry is the icon's pixel height. In the example above,

icon is 16 pixels wide by 8 pixels high, icon ! is 32 by 16.

The final entry in each icon's table holds the address of the

icon's service routine. These routines can do almost anything,

even define new icons. Often they will finish with an RTS to

MAIN LOOP- When a user clicks on an icon, the Kemal returns

the number of the selected icon (0-30) in the low byte of

pseudo-register RO, Thus we could have a number of icons

share the same routine thai, when called, checks RO first then

chooses an appropriate action.

Dialog boxes

A dialog box (DB) is a small window put on the screen to

prompt Ihe user for input or warn about possibly unexpected

conditions, A familiar example from Desk Top is the DB used

to rename a file. Calling a DB causes the Kemal to save most

of the state of the application. We can run the DB, as if it were

itself a small application, without affecting the rest of the pro-

gram (unless we need to).

Once again, a table is used, this lime to define the structure of

a DB. We run the DB by passing the address of the table in RO

and calling DODtceox. When the db is finished, Rn returns the

number of the icon (if a system icon), or user-supplied value

that terminated the DB. A dialog box table is made up of a

number of DB commands, and is terminated by a zero byte.

most of the Desk Top dbs), and the very next byte is the be-

ginning of the next db command. !f the high bit is 0, the the

next four entries are the DB^s dimensions. See the source code

for an example.

After the position, we may define up to eight icons using the

predefined db system icons or user-defined icons. We may al-

so use as many non-icon DB commands as we wish. Six DB

system icons are already defined by the Kemal. We only have

to enter their positions; the Kemal will take care of the rest

and, upon exiting the db, will return the icon's number in RO if

it is selected. Here are the six system icons:

1 OK 4 NO
2 Cancel 5 Open

3 Yes 6 Disk

These should be familiar to all GF.OS users. All six of them are

6 bytes wide and 16 lines deep. Immediately following any of

the six in a DB table would be two position offset bytes. The

first one is the number of bytes to position the icon from the

left of the DB, (he second is the offset from the top in scan

lines. Here is a simple, complete DB table using the OK icon:

QURDBTABLE =*

,byte $01

.byte $01

.byte $02

.byte $10

.byte

;default pos. /solid shadow

;0K icon command
;16 pixel X offset
;16 scanlines y offset

f'terminate table

This will simply put up a DB with an OK icon and do nothing,

until the user clicks on OK, In this instance, when OK is select-

ed, the Kemal returns to the caller with SOi (OK) in RO. If we

had put up an Open icon instead, RO would hold $05 upon re-

turn.

There are also a number of DB commands used to print text

strings or to define your own icons, among other things. Most

of them, however, require familiarity with routines and Kemal

methods not presented in this article. We will examine only

two here.

To print a text string in a DB, we use the DB command SOB (II)

in the DB table. It is followed by two position offset bytes, as

used above. The final entry is the two byte address of a null-

terminated string. To define our own icons, we use the com-

mand byte $12 (18). It, too, is followed by two position offset

bytes, and a two byte address, this time pointing to an icon ta-

ble. This icon table is the same as a regular icon table except

that the position has already been set by the DB table, so the

two bytes normally used for this purpose are made null. Here

is a complete example of these new commands:

The very first entry in the DB table is the position byte. The QURDBTABLE =*

lower bits specify the number of the Kemal fill pattern that .byte $01

makes up the shadow box. If the high bit of the position byte ;

is 1, the db"s dimensions are the default dimensions (as are -byte $0b

;defauit/solid

;DB text string command

Tronsactor 60 July 1988: Volume 9, Issue 1

byte S01,$0d
word OURTEXT

byte $12

byte S03,S16
word OURICON
byte

;k bytes, y lines
; string address

; non-standard icon
;x bytes, y lines
; icon table address
;end of table

OURTEXT =*

byte 'A SIMPLE STRING'

byte

OURICON -* ; similar to regular icon '

word OURICONPIC /graphic address
-byte ;x set above
, byte ; y set above
•byte $01 ; width in bytes
byte $08 ;height in lines
-word OURSVCRTN /service address

/

OURICONPIC =*

.byte $38 /format 2/8 bytes follow
,byte %11111111 ;a very simple icon
.byte %10000001
.byte %10000001
•byte %10000001
•byte %10000001
-byte %10000001
.byte %10000001 1

•byte ^11111111

f

OURSVCRTN =* /service routine
Ida #S10 /value to be
sta SYSDBDATA /placed in RO

jmp RSTRFRMDIALOG /exit to caller

A few things about oursvcrtn need to be explained. As

we*ve said, exiting from a db via one of the syteni db icons

will leave that icon's number in RO. But the Kemal knows

nothing about our icons, and doesn't exit the DB when they are

called. The Kemal does, however, provide a method of exiting

a DB and passing information back lo the caller.

We place the value we want into the variable SYSDBDATA, and

JMP to the routine rstrfrmdialog. This allows the Kernal to

return the slate of the applicauon back to where it was before

we entered Ihe db, then place our value into RO. If we were to,

say. draw a graphic on the screen from our service routine,

when the Kemal recovers the screen under the DB, our graphic

might be erased. But if we pass a value to RO (via Sysdbdata),

we can recover the screen, then draw our graphic.
''

Text in GEOS

There are a number of complexities dealing with printing text

to the hi-res screen. Here V\\ just present the two main charac-

ter printing routines, and a brief description of potential prob-

lems.

The PUTSTRING routine will print a null-temiinated string to

the screen; it is probably the most widely used of the geos text

routines. We first place the horizontal position (0-319) into

Rll, and the vertical position into the low byte of Rl, We stuff

the test string\s address into RO and JSR PUTSTRING. Alter-

nately, we can use the in-line form:

jsr I, PUTSTRING
-word 20 ;x position
.byte 20 ;y position
-byte "A SIMPLE STRING"

' .byte ,-null terminated
'

I

The other often-used routine^ PUTDEClMAL, is used to print 16-

bit numbers lo the screen. The set-up is similar to PUTSTRING

{x andjvgointoRlJ and Rl), but here we put the number lo be

printed into RO, and load the accumulator with a format byte.

The format byte determines how the number will be printed. If

bit seven is 1» the number is printed left justified. If bit seven

is 0, the number is printed right justified. If bit six is I, leading

zeroes are suppressed. If bit six is 0, leading zeroes are print-

ed. If we are using right jusification, the lower biis hold the

pixel width of the field the number is printed in. An example

of PUTDECIMAL is included in the source code accompanying

this article.
L

'

' L
- "

Be aware of a potential problem that may crop up when using

PUTSTRING. Any text to be printed that goes beyond the screen

borders won't be printed. There is a vector the Kemal calls

when attempting to print beyond the borders; its name is

STRINGFAULTVECTOR. The Kernal will only JSR to this address

if it is non-zero. The routine pointed to by this vector might

perform a word wrap and move to the next line, or scroll up

the screen, depending on which border was crossed. An entire

*'print at'' routine is a bit beyond our scope here, but would be

a very useful module for the GEOS programmer. Perhaps such a

module will appear in a future Transactor.

I

Finishing up

To exit our application we use the call JMP enterdesktop.

This re- initializes the system and returns us to DeskTop,

That's it! A complete geos application.

References

Two books you'll find invaluable for writing geos programs:

r

Berkeley Softworks' The Ojficial GEOS Programmer's Refer-

ence Guide, Bantam Books, 1987 ($20 US/S25 Cdn.)

Alexander Boyce's GEOS Programmers Reference Guide,

Alexander Boyce, 1986.

Alex Boyce wrote his shareware guide by dissassembling the

entire GEOS Kemal, and it covers just about everything in its

95 pages. Omissions are few, and Pve yet to find a single er-

ror. The only problem is that all the label names are six charac-

Trantoctor 61 Jury 1968: Volume 9, Issue 1

ter non-standard names, and even this is only a problem when

using bom this and the BSW guide in tandem. If you get a copy

of this guide, send Mr. Boyce a donation - efforts like this

need to be supported. [Alex Boyce's manual is available from

Mystic Jim (see NewsBRK). -EdJ . .

The BSW guide was wrillen by the developers of GEOS. and in

my opinion should have been better. Though all the calls are

presented, and mosl descriptions are understandable, the

downfall of this guide is the numerous typographical errors.

the items mentioned but left out, and the few examples, none

of which will work in the form presented. On the other hand, if

you verify the unclear sections with Alex Boyce^s manual, you

should have very few problems. BSW is in the process of

rewriting this guide, and the second edition should be in much

better shape. I have no idea when it^s due out; if they give it

the attention it deserves, it may be a while.

Program 1: ^'maketo^eos
t^

CN

EG

JD

BE

HI

KJL

EJ

fiN

fll

AJ

H)

HA

FJ

Oh

IH

HP

FB

GJ

ET

HF

FA

m
GB

CH

AL

KF

CB

DG

KI

FG

GH

m
HB

KJ

CI

m
FD

HD

FG

EE

E£

GF

CG

OG

m
IG

100 rm save"iaaJ:etogeos\8

110 ten originally part of larger prg

120 diAsM25S)

130 gosub370

140 end

150 :

160 reai disk error

no input|15,en,fflii5,et,es:ifeD=0thenteturn

IBO print'lrvs} dislt error {r?s off)"en,em5,et,es

190 go3ub250 :
return

200 :

210 open 15,S,15, "iO":reiil «opfln an»
220 gosubno

230 open2,B,2,T

210 return

250 cloae2 :reHi « close all »
260 print|15,"i0''

270 forx=0to2000:ne3tt

280 closel 5: return

290 :

300 rent « read sector » t.s.sM^SS)

310 print" reading trk:";t,"5flc; ";s

320 print|15/ul";2;0;t;s

330 gosubn0:fori=0to255:getl2,bS

340 a* (i) =asc (b5+chr& (0)) ;neit ; return

350 :

360 rem convert a c64 file to geos

310 print'input filEaaae";prtnt:inputfS:i£fS='"'thenend

380 £orx=0tol5;fS=mchrSil60}:iiext:f}=leftSif5,16)

390 goflub2lO;go$ub 600;re]]] dir

400 t=dl;s=d2:go3ub310:rMi get info

no e4=9M0):e5=aMl):refli link

420 sM01=0:sMl)=255;reiii /change

430 sM2)=3:9%U}=21 ;r«> /Ist 4

440 gosub690:reiii write block

450 t=el:3=e2:gosub310:rein get dir

460 goaub 790;rea dir entry info

470 sMfl3)=131-'^eiiiuser/c=64

480 sMe3+l)=e4;sl(e3+2]=e5;r«avlir

490 sMe3n9)=dl;sMe3+20)=d2:reflinfo

500 a^(e3+21)=0;rein seq/geos

510 3Me3+22)=6;rCT application/geoa

520 si[e3+23)=tl

530 sMe3+2<}=t2

540 sMe3+25)=t3

550 sMe3+26)=t4

m sMe3+27)=t5

570 goBub690:gosub250:retum

XL 5eO ;

CA 590 ren find a dir entry

AP fiOO t=18;s=l:gosub310

C« 610 fori=5to229step32

PR 620 g$="":forj=0tol5

AA 630 gS=gSichr${sMi+jll :nflxt

HA 640 ifgS=f$theiidl=sMi-21:<i2=sMi-ll:el=t:e2=a;63=x-3:ratum:

ren a3=filetype

AE 650 neit:ifsMO]<>Othent=»MO):s=sMl):goaub310:goto610

DC 660 print"(rv3} not found (rvs off T': return

CB 670 ;

JO 680 rem write sector to disk

JD 690 print"writing trk;";t;"»ac:";»

FO 700 printll5,"b-p";2;(J
'

CI 710 fori=0to2S5

OP 720printt2,ehrS[sMi});

Oi 730 next

HE 740 print|15r"u2^2;0;t;fl

FH 750 gosubl70:retum

m 760 : r

GM 770 ;

"'
'

DE 780 rem get dir entry info

HF 790 print"(down}{down}dir. entry infonation"

DJ 800 input''year ;";tl:iftl>99thenB0O

EE 810 input"irionth;";t2:ilt2>12thGnBlO

m 820 inpuf'day ;";t3;ift3>31thenS20

ftj a30 input"hour :";t4;ift4>23then830

HF 840 inpufoin. ;";t5:ift5>59then840

CC 850 print"file:^fS:print"date:"tl;'7^'t^:/^t3;

" tiiie:";t4;'';"';t5:poltel9a,0

FE 860 print^'do you wish to change info |y/(rva)nlrvB off}) ?':

inputk5:i£W=^'y"thenl90

CI 870 return

Program 2; ''geosdemo.pal
«

HK 100 Open 2,fl,2,"0;gBOsdeino,p,w''

PD 110 sys 700

JI 120 .opt o2

IP 130 ;

IG 140 ;f,g,kostella 12/10/87

HA 150 ;

EJ 160 *= S0304

AC 170 ;

FP 180 ;zpage pseudo-registers

ED 190 ;

OH 200 rO = $02

II 210 rOl = S02

GI 220 rOh = m
FA 230 rl ^ 504

BL 240 rll = S04

PK 250 rlh = $05

HG 260 rll = S18

BC 270 rill = 518

IC 280 rllh = $19

IJ 290 ;

M 300 ;geos routines

MR 310 ;

BA 32D menu = Scl51 ;dojiienu

HE 330 drwnmu - Scl93 :redO]rienu

LO 340 clsinu = 5cl90 ;dopreviousr[ienu

PJ 350 cienus = 5clbd ;
goto firataenu

EC 360 line = $cl30 ;dra¥line

FE 370 setpat = Scl39 ;setpattern

HJ 380 plot = Scl33 ;drawpoint

BL 390 pfill = 5cl24 ; rectangle

LC 400 pfill2 = Scl9f ;i. rectangle

BI 410 pbox = Scl27 ;fraDierectangle

JG 420 pbox2 = Scla2 ; i , fraaeractangle

LR 430 Cbox = 5cl24 ;bitMpup

HD 440 cbojc2 = Sclab ;i,bitBapup

LI 450 cboies = 5cl5a .doicons

Transactor 62 Juty 1986: Volume 9, Issue 1

HL 460 ¥indow = Sc256 ;dodlgboi CB 1190 jsr pfill2

EO 470 clsvin = $c2b£ ;r3trfmlialog EK 1200 .byte

AG 480 dsptxt = ScUB ;putstring CH 1210 .byte 199

KJ 490 dsptx2 = Sclae ;i.putstring JI 1220 ,MOrd

EP 500 dapnuD = $cl84 ;putdecijul AB 1230 .word 319.

BH 510 r«3tit = $c22c ;enterdeslitop FJ 1240 Ida t^ff

OB m : IN 1250 jsr pboi

PF 530 sfvec = SS4ab ;stri]ig£aultTector CG 1260 H

FM 540 sysdb = $851d ;3ysdbdata ^' - HJ 1270 ;1 icon required at all tunes, so.,.

IC 550 ;
' - GH 1280

1

FB 560 ; HH 1290 Idi f<duiEmy :duiiiiy until

HH 570 .header bloclc starts at $0304 CH 1300 Idy t>duiiMy ;He need one

GI 580 ;ran-based assemblers inay need GL 1310 sti rOl '

GF 590 ,to chaDge start address. IL 1320 sty rOh
*

HD 600 ; GA 1330 jsr cboxes J

AN 610 ; -assemble the header block here- OJ 1310 ; menus

OB 620 ; -note- OP 1350 Idx Kounanu

KB 630 ;l9t 4 bytes oomented out here lA 1360 Idy t>ouEnnu

ED 640 ;they uill be placed in the CP 1370 sta rOl -

JB 650 ;geos file header by "maketogeos" EP 1380 sty rOh
.

KF 660 ;,byte 0,255 ; 1 aectot LF 1390 Ida 11

AB 670 :.byte 3,21 ; 3i21 icon CG 1400 jsr menu

01 6B0 : U 1410 ; that's alll, rts to main loop 1

FE 690 ;define icon to appear on desk top

n 700 .byte $b£ ;SfiO [straight biCnap) + 63 data bytes

IH

GJ

1420 rts
1 J 5/1
I4J1P

LK 710 .byte unillllJllllllllJllUlOOO AC 1440 dtmy =* 1
'

HI 720 ,byte U0000000,^00000000,%00001000 CR 1450 ,byte 1 ;t of icons 1
1

,

BJ 730 .byte UOOQOOOO, 100000000, 100001000 EN 1460 .word 319 .'leave mouse x pas, i

NL 740 byte U0011101,%11011101,U1001111 HD 1470 .byte 199 ;y pos H

HL 750 .byte UOOOIOOI. 100010000,110001111 OD 1480

04 760 .t^e uoooiooi,uiooiooo,noooim JI 1490 ,vord ;icon bitnap addr

m 770 .byte U0001001,^00000100,U0001111 OE 1500 .byte 36,1 ;h pos.byte{/8),v pos. pixel ^

n 7B0 .byte noooiooi,nioiiioo,noooiiii JC 1510 .byte l;l ,w+h

DS 790 .byte U0000000,*00000000, 100001111

m 8O0 .byte U0000000,%00000000,*000011ll

1520

1530

.vord ;dispatch rtn r

HE

0? 810 .byte U0011101,U101D001,U1001111 BE 1540 ; . , , menu structure , -

.

1

IP 820 .byte U0010000,%10010001,%00001111 n 1550 ounmu =*

HA 830 byte U0011100,n0010001,%11001111 Cfi 1560 byte ;main top

HA 840
, byte UOOIOOOO^UOOlOOOl, 100001111 00 1570 byte 13 ;main botton

GC 850 , byte 110010001,111011101,111001111 AJ 1580 .vord ;main left

JB m byte 11DOOOOOO,100000000;100001111 GJ 1590 .vord 80 ;nain right

DC 870 byte 1100000flO,%00000000,^00001111 EB IfiOO .byte 2 :horz ($00) or'ed v/ t menu items L

IF 880 byte lllllllll,%llllllll,lllinill AH 1610
h

OF 890 .byte 100011111,111111111,111111111 AF 1620 vord filtxt

IG 900 .byte 100011111,111111111,111111111 GC 1630 byte $80 ;sub menu constant

CB 910 byte 100011111.111111111,111111111 He 1640 .vord filnnu ;rtn

OA 920 ; 10 1650

LP 930 .byte SS3 ;c64 filetype usr PL 16fi0 vord optit

MD 940 .byte 6 ;applicatioD GG 1670 ,byte S80

ID 950 .byte ;geos seq file FK 1680 vord oponu

GD 960 ; AB 1690

HJ 970 .void saddr ;load start addr fll 1700 ;text for nain selections

U 9S0 .word eaddr rload end addr JD 1710 filtit .asc "file^'

EP 990 .¥Ord start : Start addr jia^J HE 1720 .byte

OP 1000 ; GG 1730 optxt .asc "operations"

Jl 1010 .asc "filenajsie vl.l" ;pena nsme string AH 1740 .byte

QA 1020 .byte 0,0,0,0 ; HE 1750
^

EG 1030 .aso "author name PH 1760 ;,.sulfflienus.,.

GI 1040 ; AG 1770
f

AI 1050 ,tbe rest of the header block HO 1780 filmnu =*

U 1060 ;is not used in this file BH 1790 .byte 13

K 1070 ; ON 1800 .byte 27

m
AI

1810

1820

.vord

.vord 33Iff 1090 ;rain h&s^ assemblers change addr

CD 1100 '= SOflOO HH 1830 .byte $81 ;TeEt ored v/ f items

oc 1840

GN 1120 ; HB 1850 .vord filxit

Oe 1130 saddr =* .save start BL 1860 .byte ;menu action

KM 1140 start =* CP 1870 .vord doexit ;rtn

EP 1150 ; CM 1880 ,

HA 1160 ; clean screen PD 1890 filxit .asc "quit"

NQ 1170 Ida 10 AG 1900 byte

DB 1180 jsr setpat HO 1910 r

Transactor 63 July 1988:Vofume9, Issue 1

DG 1920 do*iit = 10 2650 mover =»

EG 1930 ysp restrt 1 . _ ^ IB 2660 jsr onenus

KA 1940 ;
EO 2670 ;

OB 1950 opmnu =< U 2680 dodb =*

DF 1960 .byta 13.55 ;top.bot JI 2690 jsr clradr

BO 1970 word 23,80 ;left, right JE 2700 Idx JKdbtab

SB 1960 byte S83 ;vertical or'd v/ t DF 2710 Idy *>dbtab
»

MD 1990 ;
ID 2720 stx rOl

^

DI 2000 ,wotd opOtxt KD 2730 sty rOh -

HE 2010 .byt« ;Knu action JG 2740]si window

LH 2020 .void opOrtn AI 2750 Ida rO ; returned by db

EG 2030 ;
CJ 2760 boi ours

1

PK 2040 word opltxt IT 2770 ; its 'ok' >

GP 2050 byte IM 2780 rta h

JD 2060 word mover MF 2790 ;

- -

HI 2070 ;
AJ 2800 ours =*

LN 2060 .word op2txt CI 2810 cip 1582

(ffl 2090 .byte JA 2620 bcs oursl

LG 210D .void siier HP 2830 Ida 12

1

L

EL 2110 :

CL 2840 sta dbtop 1

BP 2120 opOtit asc "pattern" GO 2850 sta dbbot
1

GE 2130 byte IF 2860 jsr dbsub

'

|l

BP 2140 opltxt asc "mover" AG 2970 jip ours4

KF 2150 .byte GL 2660 ;

HA 2160 op2txt .MC '^sizei" KK 2890 oursl =*

OG 2110 .byte AO 2900 cmp fSS3

EG 2910 bcs ours2

'

^

K) 2190 ourpat word HF 2920 Ida 12

Ok 2200 ;
GH 2930 sta dbleft '

-

IE 2210 opOrtn =* HO 2940 sta dbrght *

AG 2220 jsr cpcdus CL 2950 jsi dbsub .

K 2230 :

KL 2960 ys^ ours4

AE 2240 Ide ourpat AB 2970 ;

DF 2250 and f^OOOUUl GA 2980 0UEs2 =*

'

1

CJ 2260 sta ourpat OD 2990 cn^ t$e4
h

PL 2270 jsr fietpat PL 3000 bos ours

3

EF 22B0 jsr pfill2 BL 3O10 Ida 12

FL 2290 .byte 13 GG 3020 sta dbtop

AB 2300 ,hyte 199 KJ 3030 sta dbbot

UL 2310 .vord EJ 3040 jsr dbadd -

CF 2320 ,¥ord 319 EB 305O jn^ ou£S4
b

HN 2330 Ida Utt KG 3D60 ;

-

KB 234D jsr pbox CG 3070 ours3 =*

EK 2350 ;
HP 30SO Ida 12

\

DP 2360]sr dspti2 GG 3090 sta dbleft '

PK 2370 ,word 92 HI 3100 sta dbrght

DA 2380 byte 10 KM 3110 jsr dbadd

ai 2390 asc "pattern: " IS 3120 ;

EP 2400 byte AR 3130 ours4 ='

AO 2410 ;
BA 3140 jsr dspval

OB 2420 Idx 1132 PL 3150 ji^ dodb

JH 2430 Idy 10 OH 3160 ;

BA 2440 stx rlll

PP 2450 sty rllh IC 3180 ;use the same db, process

JB 2460 Idy «10 FJ 3190 ;the results differently

CC 2470 sty rl+l GP 3200 ;

HI 2480 Idx ourpat C: 3210 slier =*

n 2490 Idy tO IE 3220 jsr cmenus

IH 2500 stk rO EB 3230 ;

IE 2510 aty rO+1 JO 3240 dodbz =* h

EH 2520 Ida tUlOOOOOO JL 3250 jsr clradr

IL 2530 jsr dspnui JE 3260 idx *<dbtab

CG 2540
;

DI 3270 Idy #>dbtab

GJ 2550 inc ourpat IG 3280 3tx rOl

HO 2560 Its KG 3290 sty rOh

AI 2570
;

JJ 3300 jsr window

AL 3310 Ida rO ; returned by db

HB 3320 bmi ourszHB 2590 ;values used to add to pos bytes

KE 2600 dbtop ,byte 00 3330 rts

BK 2610 dbbot .byte CI 3340 ;

DB 2620 dbleft .byte IM 3350 oursi =*

]
U 2630 dbrght .byte IK 3360 mp t$82

M 2640 ;
= DO 3370 bcs oursli

Transactor 64 July 1966: Volume 9, Issue 1

DC 3380

IK 3390

EB 3400

JF 3410

LE 3420

KC 3430

EC 3440

IF 3450

KF 3460

KK 3470

EC 34 BO

MF 3490

U 3500

n 3510

m 3520

BH 3530

DH 3540

OE 3550

KJ 3560

JlN 3570

CH 3590

EC 3590

AR 3600

FN 3610

DB 3620

IH 3G30

m 2640

JE 3650

LD 3660

KB 3670

HI 3680

IE 3690

KO 3700

OJ 3710

HE 3720

GO 3730

AF 3740

HK 3750

PJ 3760

K 3770

AP 3780

EZ 3790

KF 3B00

FK 3S10

HL 3820

M^ 3330

DD 3840

AI 3850

JS 3860

JA 3870

CH 3880

GP 3B90

AJ 3900

GL 3910

HD 3920

AN 3930

NJ 3940

PO 3950

04 3960

Ida 12

St

a

dbtop

jsr dbsub

jsr clradr

Ida «2

St

a

dbbot

jsr dbadd

ji^ ours4z
^

oursU =*

cap IS S3

bcs ouis2i

Ida f2

St a dbleft

jsr dbsub

jsr clradi

Ida 12

sta dbrght

jar dbadd

ji^ ours 4

1

ours 2: =*

I? I5B4

bcs ours3i

Ida f2

sta dbt(^

jsr dbadd

jsr clradr

Ida 12

sta dbbot

jsr dbsuh

jD^ ourfl4z

r

ours3z =*

Ida 12

sta dbleft

jsr dbadd

jsr clradr

Ida 12

sta dbrght

jsr dbsub

I

ours 4 a =*

jsr dspval

jip dodbz

'1-^

-db subs-

00 3970

DC 3980

EB 3990

EJ 4000

A£ 4010

OE 4020

PD 4030

KL 4040

IP 4050

JE 4060

IE 407O

LO 4080

KJ 4090

FI 4100

clradr =*

Ida to

ata dbtop

sta dbbot

sta dbleft

sta dbrgbt

rts

h

r

dbsub ='

sec

Ida dbtab+1 ;top of db

sbc dbtop

sta dbtabfl

sec

Ida dbtab42 :bot of db

sbc dbbot

sta dbtab+2

s«c

Ida dbtab+3 ;left of db

sbc dbleft

sta dbtat]43

Ida dbtat]+4

sbc to

sta dbtab44

sec

OE 4110 Ida dbtab+5 ;right of db

KF 4120 sbc dbrght

FK 4130 sta dbtab+5

EJ 4140 Ida dbtab+6

BD 4150 sbc to

GO 4160 sta dbtab4-6

Q) 4170 rts

KH 4180
;

CE 4190 dbadd =*

ON 4200 dc
IH 4210 Ida dbtab+1 ;top of db

KH 4220 adc dbtop

NB 4230 sta dbtab+1

Gk 4240 clc

01 4250 Ida dbtab+2 ;bot of db

NB 4260 adc dbbot

TE 4270 sta dbtab+2

OC 4280 ck
EL 4290 Ida dbtab+3 ;left of db

EN 4300 adc dbleft

DB 4310 sta dbtab+3

CE 4320 Ida dbtab+4

HH 4330 adc *0

EJ 4340 sta dbtab+4

EE 4350 clc

IE 4360 Ida dbtab+5 ;right of db

H) 4370 adc dbr^t

PL 4380 sta dbtab45

01 4390 Ida dbtab+6

U 4400 adc 10

AO 4410 sta dbtab+6

AD 4420 rts

EH 4430 ;

CH 4440 ;

AF 4450 dspval =*

CO 4460 ;

BG 4470 Ida fO

EF 4480 jar setpat

GF 4490 jsr pfill2

LI 4500 .byte I

JF 4510 .byte U
X 4520 .word 239

AF 4530 .word 318

CD 4540 ;

EG 4550 Idx 1210

LB 4560 Idy 10

DF 4570 sti rlU

BF 4580 sty rllh

LH 4590 Idy 110

KI 4600 sty rlh

HL 4610 Idx dbtab+1

HF 4620 Idy 10

OK 4630 stx rOl

AL 4640 sty rOh

(^ 4650 Ida f^lOOOOOO

KA 4660 jsE dspnum

EL 4670 ;

AA 4680 Idx 1235

NJ 4690 Idy tO

FN 4700 stx rill

DN 4710 sty rllh

IC 4720 Idx dbtab+2

m 4730 Idy 10

ID 4740 stx rO

OB 4750 sty rOh

ED 4760 Ida tUlOOOOOO

IB 4770 jsr dspnun

CC 4780 ;

FA 4790 Ids (4

NA 4800 Idy ill

DE 4810 stx rUi

BE 482D sty rllh

JJ 4830 Idx dbtab+3

V-

.'. '

\ ^

Transactor 65 July 1986: Volume 9, Issue 1

KK 4640 Idy dbtai>+4

(^ 4850 sU rO

HI 4860 sty rOh

CK 4870 Ida lUlOOOOOO

GO 48B0 jsr dspnua

AJ 4B9D ;

KB 49O0 Idx t29

LB 4910 Idy fl

BL 4»2D stx rill

PK 4930 sty rllh

m 4940 Idx dbtaMS

OB 4950 Idy dbtal>+6

EB 4960 stx rO

KP 4970 sty rOh

AB 4980 Ida lUlOOOOOO

EF 4990 jsr dapnua

rta

FM

MB

PE

Ml

KF

a
BD

FM

CG

OL

KB

AE

EI

5OO0

5010 ;

5020 dbtab =•

503O ;

5040 byte SOI ;pos/3liado¥ patm

5050 ;

50EO

5070

5080

509O

5100

5110

5120

5130

5140

.byte 50 ;top

.byte a* ;bott

.wrd 48 ;left

.TOidl20 ;right

^

byta 1 ;ok

,i^a 1 ;k byt

.byte 16 ;y pixel

GA 5150 .byte Ht ;uaer icon

EH 5ieO .byte 1 ;x offset

IN 5170 .byte 4 ;y offset

AE 5180 .vord dbl ;addr of icon table

ML 5190
;

GB 5200 ,byte $12

LD 5210 .byte 3,4

FH 5220 .void db2

EO 5230 ;

(ffi 5240 ,byte $12

JG 5250 byte 5,4

LA 5260 ,vordd^3

HA 5270 ;

GG 5280 .byte $12

HJ 5290 .byte 7,4

HD 5300 ,¥0rddb4

ED 5310 ;

IC 5320 .byte ;end

JA 5330 ,

FF 5340 ;db user icon tables, graphics

HO 5350 ;t service routines for mover

GG 5360 ;

GB 5370 dbl =*

Al 5380 word dblbit ,addr of picture data

01 5390 ,byte 0,0 ;x,y-already setf

AD 5400 ,byte 1 .bytes wide

GA 5410 .byte 8 .pixels hi

IE 5420 .word dodhl ;addr of svc rtn

ME 5430 ;

GJ 5440 dblbit =*

AH 5450 ,-

BE 5460 .byte SBB ;£on&at 2, use tbe next 6 bytes

n 5470 ,byte Ulllllll

lA 5480 ,l^e UUQOUl
PA 5490 .byte UlOOOOll

GB 5500 .byte UOOOOOOl

GC 5510 .byte UllOOlll

AD 5520 .byte UUOOlll

ED 5530 .byte UllOOlll

I£ 5540 .byte UllUUl
EC 5550 ;

HE 5560 dodbl =*

ID 5570 ;

LA 55S0 Ida t$ei

IG 5590 sta sysdb

HH 5600 ; and get out

E 5610 jnp clmn
PB 5620 ;

OB 5630 db2 ='

DF 5640 .irorddb2bit

JL 5650 byte 0,0,1,8

HE 5660 .vord dodb2

HJ 5670 ;

EI 5680 db2bit =*

CC 5690 .byte $BB

LO 5700 ,byts Ulllllll

CP 5710 ,byte UllOllU

EP 5720 ,byte UlOOUll

VS 5730 byte UOOOOOOl

GA 5740 .byte UOOOOOOl

IB 5750 .byte ^11001111

EC 5760 .byte UllOllU

BD 5770 ,byte Ulllllll

EX 5780 ;

CH 5790 dodb2 Ida t$92

KD 5800 sta sysdb

CI 5810 ysp clsvin

CD 5820 ;

HI 5B30 ;

EP 5840 db3 =*

JC 5850 .word db3bit

LI 5860 byte 0,0,1,8

AI 5870 .word dodb3

QG 58B0 ;

AG 5890 db3bit =*

EF 5900 .byte $88

SL 5910 .byte Ulllllll

AM 5920 .byte UUOOlll

KM 5930 ,byte UllOOlll

EH 5940 byte UllOOlll

IS 5950 ,byte UOOOOOOl

FO 5960 .byte UlOOOOll

CP 5970 .byte UllOOlll

DA 5980 .byte Ulllllll

MH 5990 ;

DG 60O0 dodb3 =*

AF 6010 ;

LH GO20 Ida 1983

AC 6030 3ta sysdb

IG 6040 iB^ clsvin

K 6050 ;

CC 6060 ;

K 6070 ;

10 6080 db4 =*

NB 6090 .vord db4bit

I£ 6100 .byte 0,0,1,8

CE 6110 .HOEddodb4

OF 6120 ;

EF 6130 db4bit =*

Cfl 6140 ;

00 6150 .byte S88

HL 6160 .byte Ulllllll

NL 6170 .byte UlllOlll

04 6180 .byte UlllOOU

IM 6190 byte UOOOOOOl

CH 6200 .byte UOOOOOOl

EO 6210 .byte UlUOOU
FO 6220 .byte UlllOlll

MP 6230 .byte Ulllllll

GM 6240 :

PF 6250 dodb4 =*

PL 6260 Ida 1984

AB 6270 sta sysdb

IF 6260 jap clswin

lA 6290 ;

HE 6300 eaddr =*

CI 6310 .end

Transactor 66 July 1988: Volume?, Issue 1

^1 Jtr vr-i •^-

The Lt. Kernal Hard Drive System

Pushing the limits...

by BUI Brier

Recently, several third party manufacturers have released hard

drives for use with the C64 and C128. All of these uniis have

their good (and bad) features, but only one is capable of per-

forming in a manner suitable for professional and business

use: the Xetec Lt, Kemal hard disk subsystem-

Adapting a hard disk unit to any eight bit Commodore com-

puter is no trivial matter. Both the Commodore DOS and serial

data bus are unique to Commodore. The Commodore DOS is

file-oriented rather than system -oriented and is relatively un-

friendly to first-lime users. Also, Commodore drives are intel-

ligent. This means that the host computer has no facilities for

running a DOS as would a CP/M or MS-DOS machine.

Lloyd Sponenburgh and Roy Southwick of Fiscal Information,

Inc. (a turnkey systems vendor in Daylona Beach, Florida)

were well aware of these facts when they decided several

years ago to adapt a hard disk to the C64- The result was the

original Lt, Kernal hard disk subsystem, which is now assem-

bled and marketed by Xetec Inc, (Salina» Kansas) of Super-

Graphix printer interface fame.

Their success in this adaptation results in a system offering ca-

pabilities that are normally available only on powerful multi-

user mini-computers. The Xetec Lt. Kemal is not perfect but it

is far superior to anything else available.

The Lt. Kernal concept

The Li. Kemal hard disk subsystem is a combination of a

small computer system interface (SCS[, pronounced **scuzzy**)

5.25 inch hard disk assembly, various interface electronics and

a sophisticated user-friendly DOS, The standard capacity is 20

megabytes and this may be increased to 180 megabytes. Addi-

tional hardware enables it to multiplex up to 16 computers on-

to a single drive, resulting in an economical and powerful mul-

ti-user system.

The Lt. Kemal implements a modified version of the

C64/Ci28 Kernal, The Lt. KemaKs operating system adds the

functions needed to make the host computer **talk" to the hard

drive. In addition^ the Lt, Kemal DOS adds a variety of imme-

diate mode and program mode commands for file manage-

ment, directory handling and disk housekeeping. Other hard

drives only implement standard cbm dos commands and do

not include the commands that are essential for convenient

operation.

The Lt. Kemal DOS and the technology in the drive are the re-

sult of the efforts of Fiscal Infomialion, who also own the

rights to the name. They support the [X>S and the drive tech-

nology. They do not actually build or market any Lt. Kemal

hardware. The design, assembly, testing and marketing of the

finished product are handled by Xetec Inc. They support the

users as well as build, sell and service the drive system.

Both Fiscal and Xetec operate bulletin boards for the use of Lt.

Kemal owners. On these boards one may discuss various drive

topics with Fiscal or Xetec personnel, or receive up-lo-the-

minute news about new DOS features and improvements.

The Lt, Kernal hardware
I

A single station Lt. Kemal system consists of the hard disk as-

sembly, a cartridge {the host adaptor), several jumper leads, an

interconnecting cable, user's manual and a floppy disk with

the Lt. Kemal dos. CI28s also require the internal installation

of an MMU daughter-board assembly. The host adaptor is com-

puter powered while the drive has its own separate power

source. The Lt, Kemal hardware is designed for continuous

operation.

A multi-user system will also require a host adaptor and cable

for each computer (and die daughter-board if it's a C128) and

one or more multiplexers. A multiplexer can accept four sta-

tions, with additional stations (up to 16) being accommodated

by daisy-chaining more multiplexers. A multi-user system may

be a mixture of C64s and CI 28s,

The Lt- Kemal hardware is well designed; attractive and pro-

fessional in appearance. The drive is in a low, flat metal case

about the size of two 1541s placed side by side. The on/off

switch in the back is the only user control. The unit's modest

appearance belies the power and versatility within. A *'busy"

LED indicates data access. I would like to see a power-on led

as well, as the noise from the drive is barely audible. The only

sound is a faint hum from the Seagate 5.25" Winchester drive

unit and a soft whirring sound from the fan.

Transactor 67 July 1986: Volume 9, Issue 1

The host adapior in the cartridge port has access to the system

address and data bus lines. However, the adaptor doesn't ex-

tend the port. The host adaptor is enclosed in a metal case for

maximum shielding and has four rubber feet. The DB-25 re-

ceptacle on the back, which connects it into the system bus is

directly anchored to the steel chassis and is not at all fragile. A
pushbutton marked I.C.Q,U,B- (Image-Capluring Quick Utility

Backup) is the only visible control. This is the Lt. Kemal

equivalent of an [SEPIK or CAPTURE cartridge and functions in

C64 mode only (as of this writing). As received from Xetec,

the host adaptor is visible in the $DFOO I/O block of processor

address space as a multi-port device. To change the adaptor

address to the $DEOO range, simply relocate a jumper on the

host adaptor board.

Inside is a four-position DIP switch which is part of the multi-

user system arrangement. On a multi-user system, each com-

puter has a station or port number. The port number is deter-

mined by the sening of this DTP switch and is displayed as part

of the Lt, Kernal prompt. On a single station system^ the DIP

switch is set to (port numbers range from to 15 inclusive).

In a multiplexed system, station becomes the "master" sta-

tion. Additional stations are set to other port numbers and are

designated as "slave" stations.

The port number at location SDE04 (or $DF04, depending on

the I/O block chosen) can be read with: Ida $DF04 ($DE04)

and #^fOOOOllll). It is possible for multi-user systems to em-

body software features that are contingent on which station is

being used.

The host adaptor's parallel DMA interface operates at tremen-

dous speed. It is this feature which makes the Ll. Kemal the

best choice for business and professional use. Other drives use

either the serial or IEEE-48S bus. There is no contest when it

comes to speed comparisons, as we'll see below.

Installation of an mmu daughter-board requires that the CI28

be opened, the mmu removed from its socket, the daughter-

board plugged into the MMU socket and the mmu itself

plugged into the daughter-board. An additional modification

must be made to the CI 28 to accommodate the serial port

burst mode functions. Although this may sound difficult, the

manual gives clear instructions and drawings and the results

are certainly worth the effort.

A 25-conductor cable connects the host adaptor to the drive or

multiplexer. This cable is of high quality and is designed for

maximum shielding to avoid interference problems. Although

the supplied cable is relatively short, it is possible to extend

the bus a considerable distance if required. There are no user

controls on the multiplexer (which is also in a sturdy metal

case) and therefore it may be located in an out-of-the way

place.

as a means of guarding against installing the wrong DOS on the

drive (different DOS packages are used for different sized

drives). Unlike Commodore DOS, the Lt, Kernal tX)S is soft-

ware and therefore may be upgraded when necessary. By sup-

plying it on floppy disk rather than on a ROM chip costs are re-

duced and an inexpensive and convenient means of supporting

older drives is established. A process referred to as SYSGEN

(SYStem reOENeration) allows a user to upgrade or repair the

DOS easily.
1

The LL Kernal software

The superior hardware features of the Xetec Lt, Kemal are

complemented by a powerful and user-friendly DOS. The Lt.

Kemal DOS is executed in ram in the host adaptor and offers

many new immediate mode commands. This amounts to a ma-

jor overhaul of the computer's operating system and user inter-

face and gives rise to concerns about compatibility with the

host computer and the software that is to be used with it.
.

Fear not, gentle reader! With a few exceptions, the Lt. Kemal

DOS peacefully co-exists with any software that has been prop-

eriy written (that is to say, uses the Kemal jump table and does

not JSR directly into ROM routines). Commodore DOS com-

mands are supported (with a few exceptions) and all tile types

are implemented^ including RELative files. C128s equipped

with theLt. Kemal function equally well in C64, C128 or CPAl

modes. Whole-drive formatting is not allowed and there are no

file-level direct access commands (such as Ul: or U2:), these

being intentionally omitted to protect the disk-resident DOS

(there are undocumented low-level system calls that may be

used to read or write any sector on the drive).

The Lt. Kemal DOS offers these safety features and a bevy of

new commands - sort and print directories; find a filers load

address; copy large groups of files from one drive location to

another; recover accidentally deleted files; list a BASIC pro-

gram to screen non-destructively; read SEQ files; group files

into a separate area on the drive; change device number: auto-

execute a program on power-up (from either C64 or C128

mode). All that and more is available, making the Lt. Kemal a

joy to work with.

The Lt. Kernal supports partitioning (sectioning) of the drive

into user-defmable areas. Partitioning on a hard drive is an es-

sential feature for serious use, as literally tens of thousands of

files may be stored. The Lt. Kernal DOS allows the definition

of up to 11 logical units (0 to 10 inclusive). LU !0 is reserved

for the DOS and various utilities supplied with the system. The

user may reserve space for LlJs through 9 and may also store

files on LU 10 (space permitting). Each user-definable LU may

be configured as a CBM LU or CP/M LU. Any LU may contain up

to 4,000 directory entries, hi theory, a drive with I i defined

LUs could store 44,000 ^iles.

The floppy disk supplied with the drive contains the entire Lt. In immediate mode an LU is selected by lu n <return>.

Kemal DOS (which is already installed on Che drive when where n is the LU number. In a program an LU may be speci-

Xetec ships it). The DOS is serial number matched to the drive fied in the syntax of a standard CBM DOS command. To open a

Transactor 66 July 1968: Volume 9, Issue 1

file on LU 6 you would use the syntax: open2,8,2,"6:fi!ename".

Neat, huh? It is also possible to select an LU via the command
channel. As with Commodore drives the Ll, Kemal command
channel is channel 15.

Each LU may be divided into a maximum of 16 user areas

(sub-directories). A user area is selected by user n <RETURN>

or via the command channel when in program mode. Once

logged into an LU and user area, most disk activity will be re-

stricted to that area. Files may be assigned to a given user area

by logging into that area before saving or by including the LU

and/or user number in the file save syntax. You can move or

copy a file from one user area to another as well.

Once logged into an LU and user area, the dir command allows

paUem-matching with both leading and trailing ''don'i cares*',

direct output to printer, alphanumeric sorting of filenames be-

fore output, selective display of file types, viewing of file-

names from foreign areas (i.e. LUs and/or user areas other than

the one currently logged) and more.

A director)' display includes: filenanie; size in disk sectors

(312 bytes); file type (a numeric code that distinguishes ML
programs from BASIC, among others); file's load address; the

file's physical location within the LL' (displayed as a hex ad-

dress); file's assigned LU and the status of the file's "dirty"

flag. (The dirty flag indicates whether the file has been modi-

fied since the last archiving operation.) In a C128 in 80 col-

umn mode, the directory is neatly arranged in two columns.

Using the Lt. Kernal

We're not talking about a simple plug-in accessory. This is a

whole new operating system and programming environment

for the C64 or C128. The drive implements high speed, high

storage capacity, a fool-proof DOS and ease of use.
I

'
I

The parallel bus interface of the Lt. Kemal results in immedi-

ate response and superb performance during loads or saves.

Programs are running in an eye-blink and saves occur at as

rapid a rate. Also, the nasty SAVE@ bug does not exist on the

Lt. Kemal.

At I MHz (computer speed), the Lt. Kernal transfers data at

38K per second, over 100 times faster than an unmodified

1541 drive. On a C128 at 2MHz (FAST mode), the transfer rate

is increased to over 6()K per second - about 12 times faster

than a 1571 or 1581 in burst mode and over 50 times faster

than an IEEE unit interfaced through the cartridge port. Testing

has shown that a C128 in fast mode can fetch a disk sector

(512 bytes) into computer ram in as little as 10 milliseconds.

Sector writes are just as fast. Again, there is no contest when it

comes to speed comparisons.
h 1

The "latency" of the Seagate (the time required for a given

sector to pass under the head) averages 8.3 milliseconds,

whereas the SFD-IOOI averages 100 MS. The lower the la-

tency, the faster the data may be read or written. Additional

gains are achieved by extremely dense storage on the media

and by the use of multiple read/write heads. This reduces the

number of seeks required to read or write a sector and substan-

tially improves performance. Continued research on hard disk

design has improved reliability and speed while reducing cost

and physical size. These improvements are evident in the tech-

nology of the Lt. Kemal. In a year of continuous use, my
20mb unit has been trouble-free.

Inherent speed aside, credit must also be given to the DMA in-

terface and the Lt. Kemal E>os. If the drive had been interfaced

via a serial or IEEE bus and if the standard CBM DOS had been

utilized, the drive would have been little faster than the fioppy

units it was designed to replace.

User-friendly DOS

The new functions implemented by the DOS are easy to use

and immediate in action. Plain language prompts and error re-

sponses guide you through most tasks, making for an intuitive

operating environment. Immediate mode command syntax is

generally quite obvious, and easier to remember than the

equivalent cbm commands.

For example, type *1 filename'' <RETL-RN> to load a file in-

stead of dioad "filename" or load "0:filename",8. "L" will au-

tomatically load a file to its correct address, with an additional

distinction being made if the file is basic rather than machine

language. Entering "1 2:3: filename'* <RETL'RN> loads file-

name from LU 2 USER 3. This allows you to load across user

and/or LU boundaries. Within a program, standard CBM com-

mands are used and standard cbm disk error messages are gen-

erated. This means thai most software will run on the Ll. Ker-

nal without alteration, assuming that it was written to use the

standard Kemal jump table.

I

Specialized tx^s functions (such as multiple file deletes) utilize

status messages and confirmation prompts, especially if poten-

tially destructive. For example, activating an LU produces the

same result within the LU as formatUng a disk does on a CBM
drive. Because an inadvertent activation could destroy thou-

sands of files* a triple confirmation system is used to protect

the user from himself.

A single file may deleted from immediate mode with the

"era" (erase) command. Era may be used across LU and/or US-

ER boundaries and there is no confirmation prompt. Era may
be used with a pattern-matched filename but the command
will scratch only the first file found to match. Type ''oops''

<RETURN> immediately after an errant scratch and the drive

will recover the file.

Multiple file removal may \k accomplished with the autodel

command. The drive will request the source LU and USER area

and list those files on the screen. Using the cursor keys and the

space bar, you select the files to be deleted and then tell the

system to do its job. Multiple confirmations protect you from

careless typing.

Transactor 69 July 1968: Volume 9, Issue 1

Upon powering up the computer, the Commodore sign-on

message appears and ihe Lt. Kemal performs a diagrosuc test

of the hardware and DOS. When all is well, the Lt. Kemal

prompt will appear, indicanng: 64 or 128 mode, current LU

and user area, and the port number of the station. The Lt. Ker-

nal will search the power-on LU for a program called AU-

TOSTART and, if found, run it. If autostart is not found, con-

trol is passed to BASIC. This whole process takes perhaps five

seconds.

T

Who needs the Lt. Kernal?

If you write a ^ol of software, or use the computer for business

or other professional use, then the Lt. Kemal is the drive for

you. For the professional programmer or the business user, the

Lt. Kemal means greater productivity as well as a more re-

liable and efficient medium upon which to store and retrieve

data. For the BBS sysop. the Lt. Kemal means lots of space for

uploads and user messages.

The utility of the Lt. Kerrial is significantly enhanced if new

software is written to take advantage of the special features -

the multi-user capabilities, for example. A proficient program-

mer can write software that allows file sharing amongst the

various stations, resulting in greater system uiiiization.

Another special feature is the implementation of a unique (to

Commodore -based systems) file type: the KEY-INDEX file. The

KEY-INDEX file may be used lo relate data keys to the records

of a RELative file or random access storage system. The key-

index file is controlled by the DOS's KEY file processor, which

may be used by basic or ml programs. The program simply

passes the key string, its record number and some inslruciions

10 the KEY file processor and the Lt. Kemal does the rest. The

DOS passes back information to your program on the success

of the operation and so forth.

KEY file operations are very rapid. A single key and its record

number can be retrieved from literally thousands of keys in

less than 100 milliseconds. Keys are always inserted into the

index in alphanumeric order, key duplication not being al-

lowed. Writing a database to utilize a KEY-INDEX file means

that you don'(need to devise search and sort subroutines to do

the housekeeping. The key file processor does it all for you.

Using simple techniques, you can retrieve keys in ascending or

descending order or on exact match. When a key is located,

the associated record number is retrieved for access lo a com-

panion RELative file. In fact, a key file may have multiple di-

rectories, such a key file being ihe equivalent of a multi-

dimensional RAM data array. This is indeed a database pro-

grammer's dream come true. The KEY-INDEX file makes a

RAM-based index as outmoded as a vacuum tube mainframe.

Complementary to the KEY-INDEX file structure is a greatly en-

hanced RELative file implementation. On ihe Lt. Kemal, RELa-

tive file record length may be up to 3.072 bytes with a maxi-

mum of 65,535 records per file. The maximum possible size of

any given RELative file is 16.78 megabytes. Record position

commands are executed much faster than on CBM drives and a

double -position dance is not required for reliable performance.

There are numerous other features embodied in the Ll. Kemal

hardware and DOS, a discussion of which would fill another

whole article. However, this is not supposed to be a sugar-

coated hardware review. It is always easy lo emphasize the

good features over the nol-so-good and therefore Td like to

mention those features that i don^t consider lo be optimum.

It^s a great system but...

The Lt. Kernal comes with a manual that has been printed and

bound in the same manner as the manuals supplied with ex-

pensive MS-DOS software. However, the manual is far from

complete and will prove to be heavy reading for the neophyte.

Although the manual thoroughly describes the installation of

the drive hardware and documents (he Lt. Kemal DOS com-

mands, it glosses over such hard drive concepts as logical

units, subdirectories and how Ihe DOS operates. A quick com-

mand summary card is included but it does not shed any more

light on the workings of the DOS than can be found in the man-

ual text itself. If you purchase a Lt. Kemal system be prepared

to do some experimenting with commands. For example, the

manual doesnH mention that reading a directory from within a

program will return only the directory of the currently logged

user area. Nor does it mention that immediate mode DOS com-

mands are ignored unless the typed command starts at the left

margin of the screen.

According to Lloyd Sponenburgh of Fiscal Information, an

improved manual and a *^power users* kit" are in the works.

Presumably, the power users' kit will document low-level DOS

calls for advanced programming applications and will describe

the inner workings of the DOS in greater detail. Such knowl-

edge will be essential if you ever intend to write a multi-user

software package or wish to make full use of the drivers speed

and power.

There are some less than optimum conditions in the combina-

tion of drive, DOS and computer. The Lt Kemal DOS con-

stantly monitors system activity to determine if a Lt. Kernal

DOS command has been issued or if a call has been made to

the CBM Kemal subroutines responsible for peripheral activity

{such as CHKIN, CHKOUT and so forth). If it detects disk-related

activity, it temporarily remaps the system, causing certain DOS

routines to appear in place of some areas of RAM. This is the

primary means by which user or program DOS commands are

intercepted and serviced. This takes time and, in some circum-

stances, reduces the computer's operating speed.

A reduction in processing speed will be evident in any func-

tion that uses the Kemal basin, GETIN or BSOUT subroutines.

This effect will be quite noticeable when using the RS-232

routines at 1200 or 2400 baud or when mnning a CI 28 in

SLOW mode. The Lt. KemaPs presence has a greater effect on

the CI 28 because of its banked memory environment. This,

Transactor 70 July 1966: Volume 9, Issue 1

coupled with the greater complexity of many C128 I/O rou-

tines, simply means slower operation (only so much can be

done with an eight bit CPU). Needless to say, the slower opera-

lion under the Lt. Kemal DOS is less of a problem with the 128

in FAST mode and is less noticeable m BASIC programs than in

ML or compiled basic programs.

Because of the interception of the basin and bsout subrou-

tines, SEQueniial and RELalive file access is actually slower

than the IEEE drives. This is less a fault of the Li. Kemal than

of the CBM Kemal itself, as many redundant checks are per-

fomied when the BASIN or BSOUT subroutines are utilized. This

intensive activity, coupled with the extra code required to pass

data between computer and drive slows down the system. Im-

provements to this section of code are being implemented in

the next version of the Ll. Kemal DOS and that BASIN and

BSOUT will perform at a much higher speed.

With one exception, the Lt, Kemal DOS operates transparently

as long as the programmer uses the CBM Kemal jump table

and does not jsr directly into I/O routines in ROM (which is

bad programming practice). The exception is thai the low-

level or ^'primitive'* Kernal i/o calls (talk, listen, etc.) are

not supported. Any calls to the primitives will be sent directly

to the serial port. This means that when running in C64 mode

you can forget about using the DOS Wedge to issue commands

to the Lt. Kemal (which would be pointless anyhow). Howev-

er» the Wedge load and save commands will work with the Lt.

Kemal and any commands prefixed with the @ symbol will be

passed to the serial port. Therefore, you may use the Wedge to

control a serial port floppy drive that is also connected to the

system.

In CI 28 mode, all basic 7.0 DOS commands are supported ex-

cept HEADER and COLLECT (neither of which has any purpose

on the Lt. Kemal). As mentioned before, the DiK command
permits the direct output of the directory to the printer (with-

out pagination). Also, it appears that DOS doesn't verify that

the printer is on-line, as Fve had the system crash when at-

tempting to print to a non-existent printer.

Because of the memory limitations of the C64, the Lt. Kernal

DOS swaps the $C00O-SCFFF range of RAM out of processor

space when certain immediate mode commands are utilized.

Upon completion of the command, the contents of this range

are restored. This won't present a problem unless you have an

intermpt-driven routine in this area. For example, if you re-

quest a directory from the Lt. Kemal, the SCOOO block will

temporarily become part of the DOS. If an interrupt is directed

10 this area of ram the machine will probably crash - the IRQ

will not find the appropriate code, but will instead see Ll, Ker-

nal DOS code. The same limitation holds true for several other

Lt. Kemal utilities. It seems to me that this problem could be

avoided by stashing the current page three indirect Kernal vec-

tors on the drive (where there's lots of room for such activity),

temporarily resetting all of the vectors to their default values

and then restoring them to their original condition once the

processing has been completed. As it is you must exercise care

to avoid system fatality. For the non-technical user this may

represent a source of frustration and may lead him or her to

believe that there is something amiss with the drive.

With one exception, no memory usage restrictions appear to

exist in CI 28 operation. The exception has to do with the use

of the 1/0 block at $DFOO. The STASH, FETCH and SWAP state-

ments in BASIC, the DMA-CALL subroutine in the Kemal, and

CP/M (when using drive M) all address this area, as this is

where the external ram expander is mapped into the system.

To use the ram expander or to run cp/m, you must move the

I/O page jumper on the host adaptor so as to map the adaptor

into the SDEOO block. This may prevent protected C64 pro-

grams captured with LC.Q.U.fl. from functioning.

Tn terms of software compatibility, a few problems may arise.

Any database program that utilizes direct-access storage and

retrieval methods (Ul: or U2:) is not going to operate with the

Lt. Kernal. This means that older versions of Superbase will

not operate (the more recent version that uses RELative files

will work). Most database managers, word processors and

spreadsheets will operate if they utilize standard CBM file

types. Needless to say, any software that is dependent upon the

inner workings of the 1541 DOS (such as applications that set

up some kind of speed-up function in the drive) are not going

to run. Programs that rely on the internal timing of the 1541

ROMs or attempt to utilize low-level DOS functions will go bel-

ly up. LCQ.U.B. functions only in C64 mode as of this writing

so C128 software that has been protected by IX)S protection

schemes cannot be transferred to the Lt. Kemal. To utilize

such software with the Lt. Kernal you must change the drive's

device number (a simple immediate mode command) and load

the software from the floppy drive.

One other compatibility problem exists that may be important

if you wish to use KEY files with database software written in

BASIC. The BASIC syntax for manipulating khy files is not

compatible with any of the BASIC compilers that are presently

available. This is because a colon is used to separate the SYS

call to the KEY file processor from the hst of variables that is

associated with the call. Most compilers can be instructed to

ignore a program line fragment by placing a double colon (::)

before the fragment, the result being that it will be passed di-

rectly 10 the BASIC interpreter. Compilation will then resume at

the next colon or at the start of the next line. However, the

colon following the SYS call to the KEY file processor will tell

the compiler to attempt to compile the list of variables that fol-

lows the SYS call. The compiler will then flag the list as a syn-

tax error. This is unfortunate, as a compiled basic database us-

ing a KEY file would make a very nice and efficient package,
4

4

If there is one significant weakness in the Lt. Kemal system, it

is the means by which data backup is performed. Any data loss

on a hard disk system could be massive. To ensure data

security, frequent backups are mandatory. Unfortunately, the

only backup method presently available to a Lt. Kemal user is

continued on p. 73

Transactor 71 July 1968: Volume 9, Issue 1

The 1351 Mouse and GEOS 1.3

Graphic environment on a roll

Review by Malcolm O'Brien

The 1351 mouse was well worth the wail. What a gas! What a

great product! With its sleek and attractive slyhng (identical to

the Amiga mouse), the 1351 mouse is a perfect complement to

your 64 or 128. It has a very soUd feel and, to my hand, a more

ergonomic design than the mice you'll find attached to Lisas,

Macintoshes or PCs, 1 particularly like the tactile feedback on

the two buttons.

Two Modes
f

The people at Commodore have cleverly given the 1351

mouse a dual personality. It has two modes of operation, se-

lectable on power-up. With the mouse plugged in, hold down

the right mouse button while you turn on your computer Now

your mouse wiU be disguised as a joystick and will function

properly with any software that expects to find a joystick. Ac-

tually, this disguise is more like the 1350 mouse, the joystick

in mouse clothing. It should be noted here that some users

have reponed that mice make lousy joysticks. Certainly, this is

not the way to have a rip-roaring game of Screen Busters from

Outer Space, but it may be just the ticket in a different sort of

application; for example: hi-res drawing programs like Doo-

dle, sprite editors or font editors. You may also find it suitable

for non-arcade type games like Shanghai. Experiment!

If you power-up without holding down the right button, the

mouse will be initialized as a true proportional mouse. It is in

this mode that the 1351 mouse is in its glory and really offers

Commodore users something new.

\
Documentation

The documentation is up to Commodore^s usual (new) stan-

dard: very good! A small booklet included with the package

contains a short section on using and caring for (but not feed-

ing) your mouse. There is one small discrepancy here between

what the booklet says and the way things are in the real world.

The booklet advises cleaning the mouse's metal rollers with

alcohol or head-cleaning tluid on a cotton swab. On disassem-

bly, however, it will be seen that the rollers are actually plastic

cylinders on metal spindles. Note that you should never use

solvents like alcohol or head-cleaning fluid on these plastic

parts. Keep your mouse clean by ensuring that you always use

it on a clean surface. Even so, a periodic dusting is recom-

mended. Just disassemble your mouse as instructed, wiping

the ball with a soft cloth and blowing into the opening.

Programming

The second section of the booklet is longer and offers an in-

depth discussion of mouse internals for those interested in of-

fering mouse support in their own programs. In joystick mode,

this is fairly simple - it^s the same as programming for a joy-

stick with one small (and generally ignorable) exception.

When the 1 35 1 mouse is functioning as a joystick, the left but-

ton serves as the fire button in the standard way. However, the

right button is readable. It^s mapped into the SID POTX register

When the right button is pressed, the register will contain a

value less than $80. When the button is not depressed, SID

POTX will contain a value greater than or equal to $80. 1 call

this an ignorable feature since it is not a joystick function. If

your program is going to read the right button, the operator

won*t be able use this function if he or she is using a joystick.

(As an aside to the readership: What is the right button for? If

GEOS uses it, 1 don^t know how. Anyone else?)

Programming the 1351 mouse in proportional mode is an en-

tirely different kenie of fish. This is not a simple task, espe-

cially the positioning aspect (the left and right buttons appear

as joystick lines). If youVe not into machine language, or are

intimidated by phrases like: "wedge into the IRQ handler prior

to the polled keyscan" or ^^distinguish between a point short in

the keyboard matrix and a whole row or column being ground-

ed", then you will have a lot of difficulty programming the

mouse yourself. There is an alternative however...

I

The Disk

Of course, the best hardware is nothing more than a pricey

doorstop without software. Included in the 1351 mouse pack-

age is a disk of the 'flippy' persuasion. Side A has several

demo programs for the 64 or 128 (in native mode). These in-

clude: mouse drivers in assembly source, BASIC loader and

raw machine language. Also included is a simple "Identify the

Shape" educational program that serves as an example for

writing BASIC programs that get mouse event data from the ML

drivers. This technique serves to make even a simple basjc

program look more sophisticated and professional.

Transoctor 72 July 1968: Volume 9, Issue 1

At present there is very lillle commercial software available

ihat will make use of the 1351 mouse (at least in proportional

mode). Obviously, most mouse users will be using the device

with GEOS and will need no other justification for their pur-

chase. The only other commercial software that I'm aware of

that offers support for the 1351 mouse is CADPAK from Abacus

Software. There may be other products but I haven't seen them

yet. Nor have I used CADPAK, although it would definitely

seem to be an appropriate application for this device.

GEOS VI

J

Side B of the included disk has only one file. This is the geos

upgrade to Version 1.3. Note that you cannot use the 1351

mouse (in proportional mode) with Version 1.2 or earlier. Al-

though the upgrade program is copy-protected, it may be

freely re-used to update anyone's GEOS system disk, and it

should be so used. Upgrading is a good idea even if you're not

using the 1351 mouse. The new version is changed in several

important ways: new printer drivers, new input drivers, new

utilities, safeguards and shortcuts.

First, the new input drivers: the Flexidraw lightpen and the

Koala Pad. You can switch from joystick to mouse to pad to

pen without rebooting with "select input" under the GEOS

menu. Note that the pad and pen cannot use the scroll arrows

in geoPaint. Use the page position indicator at the bottom.

The utilities: Backup, Disk Copy, Configure and Rboot. Back-

up is now only for use with the GEOS system disk. Use Disk

Copy for copying work disks. Configure allows the use of a

RAM expansion unit. You can create a RAM 1541, 'shadow' a

real 1541, use pma for fast data transfers, and enable fast re-

booting. If the deskTop is in RAM, tapping the RESTORE key

will reboot CEOS from RAM - fast!

I

The safeguards: deskTop 1.3 and Disk Copy will not allow

you to screw up your Master disks. You won't be able to for-

mat them or use them as ^^destination" disks. Nor will you be

able to delete important files or even relocate certain files.

This is going to spare a lot of users "that sinking feeling..."

One extra safety note, though. You can't use the deskTop 1.2

or the old Preference Manager with the 1.3 GEOS Kemal. To

do so is to court a crash (speaking from experience here!).

Finally, the shortcuts; These are keystroke combinations for

functions thai used to be menu-only. Shortcuts are accessed by

holding down the logo key and pressing another key. The

deskTop has three: Logo-I allows you to select a new input

driven Logo-O opens a disk and logo-C closes it. geoWrite has

numerou-s shortcuts, which are shown in the menus.
I

The geoPaint update "handles text scraps belter" according to

Berkeley Soflworks, and forces the edit box to conform to

colour card boundaries when working in colour mode.

You get a lot for your money in this package and it's all great!

I love mine and youTl probably love yours too.

Lr. KernaL., continuedfrom p. 71

L

to copy files from the hard drive to a floppy disk drive. Ac-

cording to Lloyd Sponenburgh, a cartridge-type teee interface

may be used to connect an IEEE drive. With a 1541 you will

need 118 (that's not a misprint) floppy disks to back up your

20mb hard drive - assuming that the drive is full). With a

1571, or if you use both sides of the disks on a 1541, you will

need 59 floppies. A 1581 user can manage with a mere 25

disks while an SFD-iOOi user will be able to get by with only 20

disks. What makes this backup method especially onerous is

the fact Ihat the only proper way to back up a high capacity

drive is the "double grandfathering" method. This requires the

use of two complete sets of disks, thus protecting you in the

event of a major system fatality while performing a backup.

Regardless of the drive used, backups will be time consuming.

If you have a 1541 or 1571 drive, the built-in FASTCOPY utility

will allow a copy to be cranked out once every three minutes

or so (FASTCOPY runs only in C64 mode). A little math will icll

you how many hours you'll need to perform a full backup.

FASTCOPY reprograms the floppy drive to speed up copying.

Therefore, it is unlikely that it will function with a 1541 clone

(it wouldn't operate with my MSD SD-2). [For what it's worth.

the FSD should work in this case. - Ed.] In such a case, or if

you are using an IEEE drive, you can use ^copy-all 64" (sup-

plied on LU 10 of the Lt. Kemal) or "uni-copy\ Neither of

these copiers speeds up the serial bus,

Unfonunately. there is no mechanism presently available to

copy a Lt. Kemal key-index file to or from a floppy disk. For

a business or other professional user, the backup situation rep-

resents a significant limitation. Most businesses simply cannot

afford the time required for a full backup. Yet a business can-

not afford to not back up the drive. Although i-astcopy lets

the user selectively back up only the most recently modified

files, he would still be laced with a daunting task. One solu-

tionwould be a high-speed streaming tape backup. A ttape

streamer can back-up 20MB in under 10 minuEes. Xelec has

done some work in this area but, as of this writing, has not

released any hardware.

To buy or not lo buy..-

At approximately $900 (us), the price is not trivial. However,

for a major breakthrough in high capacity mass storage in ter-

ms of features and ease of use, it's a great value. Consider: two

SFD-lOors, an IEEE interface and cables will cost approxi-

mately $600 (US) and will only give 2.1 MB, 1.2K/second

speed and no 1X)S enhancements. My only reservation in rec-

ommending the Lt, Kemal for business or professional use is

the backup situation. A better system is urgently needed if the

Lt. Kemal is to make its mark in the business world. However,

if you can live with the present backup scheme then the Lt.

Kemal is definitely the way to go. The Lt. Kemal is not per-

fect but it is close! And, it is constantly being improved.

Contact Xelec, Inc. at 913-827-0685 for more information.

Transactor 73 July 1986: Volume 9, Issue 1

Warp Speed

''Impulse power is not enough, Mn Scotf

Review by Malcolm O'Brien

I

,

Warp Speed is one of the newest entries in the DOS enhance-

ment sweepstakes and stands poised to become a front runner.

Warp Speed is powerful, flexible and easy to use. A reset but-

ton is built into the cartridge^ along with a 64/128 slider

switch- Warp Speed will appeal to a broad base of users due to

the number of devices supported- Warp Speed works with: the

64, the MS in native mode (40 or 80). the 1541, 1571, 1581,

MSD (!) and some hard drives. An extended DOS wedge is in-

cluded with support for multiple drive systems, AH features

are accessible from menus to make things simple for new

users while the long-time hacker can bypass the menus in most

cases and use one or two keystrokes to initiate the magic.

Warp Speed is easier to use than it is to document. It has so

many features that describing them all results in a long review.

It's great to have this kind of power at your command- But it

wasn't always this way...

A litlle background
'

The C64 and 1541 seemed like a step backwards to pet users

who had BASIC 4.0 disk commands and quick, parallel dual

drives such as the 4040. At that time the obvious path for drive

enhancement was to interface the C64 with the faster ieee disk

drives. Many users (including me) are still using IEEE drives

via G-Links. BusCards etc. (To be fair, it must be noted that

the introduction of the serial bus interface did help to keep the

hardware costs down.)

As the flood of C64 software turned into a tidal wave, more

and more commercial (read: copy-protected) programs relied

on 1541-specific drive ROMs. Another step backwards - we

now needed to use 1541s lobe able to use some software. And

so it was that the C64 community was offered Kwik Load,

Fast Load. Vorpal. SuperDos. GT-4, Mach and others. You

probably have one (or more) of these yourself.

Fast Load may have been the most popular of these. Even

now, years later. Fast Load is still prominently displayed in ev-

ery computer store 1 browse and> presumably^ is still selling

well. It was an effective solution for the problems described

above but added new problems of its own design (skewed di-

rectories principally). In spite of this, it was parked in my car-

tridge port for three years or so.

But not any more. Warp Speed is how I spell relief now. Warp

Speed has powers and abilities far beyond those of mortal car-

tridges- It*s clearly superior to Fast Load and is well worth the

difference in price (about $10 here in Toronto).

What the user will find
I

I

I

First and foremost, the speed increase is not just in the loads.

Saving and verifying also happen at Warp Speed. (Tech note:

Files saved with Warp Speed are saved in a *'skew 6'* format-

These files will warp load ten times faster than normal 1541

speed.) The DOS wedge includes a quick text file reader, the

ability to set the currently logged drive and single-key entry to

the menu system (British pound key) or the machine language

monitor (pi key).

The text reader is a nice addition- Just type an ampersand (&)

followed by the name of the text file and hit Return. The

screen clears and the text begins to be printed to the screen.

CTRL may not slow it down enough for reading so use the

spacebar to pause and restart the listing. RUN/STOP will exit.

This is similar to the type command in MS-DOS and cp/m. It's

great for reading files or just to take a quick peek to determine

a file's contents. I use this feature a lot and you probably will

too.

Setting the currently logged drive is also common to the MS-

DOS and CP/M environments. This allows you to leave out the

",8'' or ",9" when accessing the drive. To switch between the

two, type a number sign (#) and Return. This will toggle be-

tween devices 8 and 9, If you're using more than two drives,

follow the number sign with the device number of the drive

you want to operate on.

Note that Warp Speed will search both/all drives for the file

desired and, if found, will switch the currently logged device

to that drive. Commodore-run/stop will always load the first

file on the disk, not the most recently accessed.

The DOS wedge

As usual with the wedge, you preface a disk command with

the at'Sign (@) or a "greater than" (>). The at-sign alone will

read the error channel. You use a slash for loading BASIC, a

Transactor 74 July 1966: Volume 9, Issue 1

left-arrow for saving BASIC, a percent sign for ml loads and an

exclamation point for a verify. An unusual wedge fealure is the

"f" command. This will yield a fully verified fast format (22

seconds) and even includes an "Are you sure?" prompt.

The non-destructive directory that is initiated by typing a dol-

lar sign followed by a Return can be paused and restarted with

the spacebar or aborted with run/stop. All pauern matching

and multiple parameters are supported; i.e. "$*=seq" or

"$p*,t*.s*'' will work properly. Beats me why they never doc-

ument this stuff!

Utility commands

The other directory function is one of the Utility Commands.
All of these begin with an up-arrow. When followed by a "$",

the disk auto menu is enabled. This will load in the directory

and allow you to scroll through it with the cursor keys. Press-

ing Return will warp co load the highlighted file and run it. I

was pleasantly surprised to discover that if you decide not to

load a file and abort the auto menu with the STOP key, your BA-

SIC program is still in memory. Note, however, that if the BA-

SIC program in memory is very large, the directory load will

corrupt BASIC,

Here^s a quick description of the rest of the Utility Commands
(each preceded by an up-arrow):

k

e

u

r{n)

s

d

- Kill: fast loader only. Other functions are unchanged

- Enable: resets the Warp Speed load, save and restore

vectors

- Unnew: restores BASIC after a NEW or pressing the re

set switch

- Renumber; assign current drive device number n (de-

fauhis8to9)
- Hardcopy: dump text screen to printer (upper-

case/graphics)

- Single side: put 1571 into 1541 mode
- Double side: put 1571 into native mode

Note that both formal comtnands function in accordance with

the 1 57 Ts current mode.

Mill ti-file/whole disk operations

These operations are selected from the Main Menu which is

brought up by entering the British pound key. Selections are

made from the menu by number or by cursoring. Functions in-

clude single drive copier, two drive-nibble copier and the abil-

ity to copy or scratch multiple files. (Typing an "a" will select

all files. An *'r*' will select remaining files below the cursor.

Home will move the cursor to the top of the directory. An *'s"

starts the function when selections are completed. Operation

status is indicated throughout,)

The two drive copier will duplicate a single-sided disk in 30

seconds! This copier uses write verification and will report any

errors encountered during copying. Although the documenta

New! Improved!

TRANSBASIC 2!
with SYMASS

-I
I 1/

* *

**Iused to be SO ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people
asked me to try new TransBASIC 2, with Symass"^.

They explained how TransBASIC 2. with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was
convinced! TransBASIC 2 went to work and got my
code looking clean as new in seconds! Now I'm telling

ali my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass. the symbolic assembler.

Package contains all 12 sets ot TransBASIC modules
from the magazine, plus full documentation. Make your

BASIC programs run taster and better with over 140

added statement and tunction keywords.

Disk and Manual $1 7.95 US, $1 9.95 Cdn.
(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!"

Transactor 75 July 1988- Volume 9, Issue 1

tion states that this is not as reliable as the fully verified single

copier^ it has worked perfectly for me every time and is a won-

der to behold!

The manual suggests using the single copier if the dual copier

should fail A great feature of the single copier is compression

of the read data. You may be able to copy a not-full disk in just

one or two passes!

As you are probably beginning to surmise, these functions will

allow you to re-organize your disk library with a minimum of

time and trouble. And you do need to reorganize, don^t you?

For the programmer

The monitor and sector editor are integrated and function syn-

ergistically. A lot of thought has gone into them and the envi-

ronment at the low level is quite nice.

The vertically scrolling monitor has several unusual features

that set it apart. The \}0 command, for example. Enter *'o 08"

and youMl be working in drive ram! An "o" by itself will re-

turn you to the computer. While in drive RAM you can assem-

ble, disassemble, execute or dump (in Ascn or hex). Also valu-

able is the option of setting the configuration or bank select

register to a new value. Use the left-arrow followed by the de-

sired value. On a C64, a value of $34 in $01 will allow you to

work in the RAM under the ROMs and the I/O block at $D000,

On a C128, a value of 00 or 01 can be presented to SFFOO to

select bank or bank 1

.

Another handy feature is the transfer command. This is a

smart transfer, i,e. the two blocks of memory can overiap and

the transfer "will not turn into an accidental fill command/* In

addition, you can transfer to and from drive memory with the

"td" and "tc'* options or toggle output to the printer with the

''p" command.

All wedge and utility commands are also available from the

monitor All the other standard monitor commands are includ-

ed with a couple of variations in their functioning. For exam-

ple, you can specify an alternate load address when loading or

saving a program. A '"d** without an end address will disas-

semble to the end of memory; once again, pause and resume

with spacebar, abort with STOR The hex and ASCII dumps work

the same way. Scroll up or down as desired. Overtype an ad-

dress at the top or bottom of the screen and the monitor will

obediently begin displaying from the target memory segment.

Time to leave the monitor now and there are five ways of do-

ing it! The "q" command will exit and restore the break vector

to normal, i.e. Commodore*s monitor in the 128, warm start in

the 64. The "x" command will return to BASJC with the break

vector pointing to the cartridge monitor. Switch to the sector

editor with *^xs" and to the main menu with ^'xm". The "xc"

command will return to BASIC via a cold start which will also

clear the break vector These extra conveniences are part of the

reason why Warp Speed is such a joy to use.

The sector editor uses memory from S7E00 to $7EFF as the

editing buffer. The default editing mode is hexadecimal but

pressing "t" will enable text mode. If you exit to the moniior,

the editing buffer and current track and sector values are re-

tained. This allows the option of editing the sector at the op-

code level.

Type an "r" to read a sector if the default track and sector is

ok; otherwise enter the values in hex. Up and down scrolling

will move the cursor through both pages of the sector. Type a

"p" if you'd like to dump the block to your printer.

Extra editing features are available while working within a

sector. Pressing ^*SHlFT-CLR/HOMF-" will fill the buffer with ze-

ros from the current cursor position to the end. HOME will

move your cursor to the top of the screen editing area. A sec-

ond HOME will place the cursor at the top of the sector. From

this position, you can gel the next sector in the file by typing a

"j" which will jump to the track and sector under the cursor.

To step through the file from any other position, type an "n*'

for next. The plus and minus keys will move you one sector

forward or back. When used with SHIFT they move you one

track forward or back.

Before you write that block back with "w'^ , remember that you

have source and destination drives self If you really want to

write back to the source disk, press the spacebar to flip the

drive settings. The usual cautions with respect to sector editors

apply. Be careful....

I

Some small problems

The only problems 1 had while using Warp Speed occurred

while using one 1541 and one 1 571. I must lay the blame at

the rubber feet of the 1571. This is an ^^old rom" 1571. The

docs for Warp Speed clearly stale that you should be using the

upgrade ROMs. And you should - even if you*re not using

Warp Speed- Despite this discrepancy. Warp Speed functioned

beautifully with the old ROM 1571 when it was the only drive

attached.

I should also mentioned that some software will not fare well

with Warp Speed installed. The Q-Link software refused to

boot but GEOS disables Warp Speed to use its own turboDisk

and you can boot Q-Link from the deskTop. 1 encountered a

different problem while using Sixth Sense on the C128. After

a period of lime online (full buffer?) I would be dropped into

BASIC with garbage characters on the screen. Typ'^g ^^^

restarted Sixth Sense which then cleared my buffer and hung.

On the other hand, the performance improvement with some-

thing like SpeedScript is nothing short of remarkable.

I

All in all. Warp Speed offers much more than fast loading. It's

helped a lot in the matter of producing the Transactor disk.

which requires more work than you would imagine. Users

group librarians know something about this too. But the bot-

tom line is that, with its numerous features and great speed.

Warp Speed has something for everyone.

Transactor 76 July 1986; Volume 9, Issue I

News BRK
' Transactor News '

^

Submitting News BRK Press Releases '•
, .

If you have a press release you would like to submit for the

News BRK column, make sure that the computer or device for

which the product is intended is prominently noted. We re-

ceive hundreds of press releases for each issue and ones whose

intended readership is not clear must unfortunately go straight

into the trash bin. We only print product releases which are in

some way applicable to Commodore equipment. News of

events such as computer shows should be received at least 6

months in advance. The News BRK column is compiled solely

from press releases and is intended only to disseminate infor-

mation; we have not necessarily tested the products

Distributors Wanted

Many subscribers state that the magazine is not available in

their area. If you know of retailers who are not carryingrmnj-

actor or Transactor for the Arnica, write or e-mail (Com-

puServe PPN 76703,4243) and send us their names and ad-

dresses. We particularly need distributors in: Rhode Island,

New Hampshire, Maine, Vermont, Delaware, West Virginia,

South Carolina, Alabama, Mississippi, Iowa, South Dakota,

North Dakota, Montana, Nebraska, Wyoming, Hawaii,

Arkansas, Idaho. Alaska and all over Canada, particularly on

the Prairies and in the West. Subscribers and dealers are our

most important resource.

The 20/20 Deal

...is still in effect: order 20 subscriptions to the mag or disk, 20

back issues, 20 disks etc., and get a 20% discount. {Offer ap-

plies 10 regular prices and cannot be combined with other spe-

cials).

Subscriptions

Please note that your subscription order will run from the next

issue and cannot be back-dated or our mailing database would

freak. This may mean a delay in getting your first issue. If you

need back issues, use the order card in the centre of the mag.

No Longer Available

The 1541 Upgrade ROM Kit is sold out. See Volume 7 Issue 2

for complete instructions on obtaining a set; disk #13 contains

the ROM image youMI need to bum your own EPROMS.
However, we're reasonably sure that the ROM image is com-

patible with the 1541 only, 1541C owners will need to create

an image of their ROM set, then make the changes described

in Volume 7, Issue 2, but with minor mods for what are more

than likely simple address changes. We are still wailing for an

update article from someone who has successfully done this!

''Moving Pictures'' is no longer available from Transactor. If

you have ordered a copy, you may ask either for a refund or

have a credit issued against further orders from Transactor

Publishing - Renanne Turner, our customer service person,

will be in touch with you. Moving Pictures is now distributed

by CDA, with new packaging and manual. Contact CDA at:

P.O. Box 1052, Yreka, CA 96097. Phone (916) 842-3431.
+

I

Transactor Mail Order
F

ri
I

Items on order cards in back issues ofTransactor are not nec-

essarily currently available; if you are unsure, please call Re-

nanne before sending in your order. To be certain, place orders

from the card in the most recent issue. Please remember that

your order takes a week to len days to reach us. We wil pro-

cess it as quickly as possible and it will then take another two

weeks to reach you by what is alleged to be a Postal Service. If

you have a problem, call Renanne (Mondays, Wednesdays,

Fridays, 9 AM - 4 PM Eastern time.)

Prices for all products are listed on the order card in the centre

of the magazine. Subscribers: you can use the address label

from the bag holding your magazine and just stick it on the or-

der card instead of filling it in by hand!

• Jugg'ler-128 - A product of Heme Datasystems Inc., written

by M. Garamszeghy. This program provides read, write and

formatting support for more than 130 types of MFM CP/M
disks on the CI 28 in CP/M mode with a 1570, 1571 or 1581

disk drive. It is compatible with all current versions of C128

CP/M and all CI 28 hardware configurations including the

I28-D. All normal CP/M file access commands can be used

with the extra disk types. Juggler is available by mail order

for $19.95 Canadian or $17.95 US from Transactor. Order

from the card at the centre of this magazine.

• Quick Brown Box - Battery Backed RAM for C64 or C128.

The Quick Brown Box cartridges for the C64/C128 retain files

even when the cartridge is unplugged. Unlike EPROM car-

tridges, the QBB requires no programming or erasing equip-

ment except your computer. Loader programs are supplied and

you can store as many programs into the cartridge as its

memory will allow. Ii may even be used as a non-volatile

RAM disk. Auto-stan programs are supported, such as BBS
programs and software monitoring systems that need to re-

boot after a power failure. All models come with a RESET
push button and use low current CMOS RAM powered by a

160 mA-Hr Lithium cell with an estimated life of 7 to 10

years. Comes with manual; software supplied includes loader

utilities and Supermon+64 (by permission of Jim Butterfield);

30-day money back guarantee and a 1 year repair/replacement

warranty.

• Ttie Potpourri Disk - A C64 product from the software

company AHA! (aka Chris Zamara and Nick Sullivan). In-

Transoctor 77 July 1986; Volume 9j3sue 1

ciudes a wide assortment of 18 programs ranging from games

to educational programs to ulililies. All programs can be ac-

cessed from a main menu or loaded separately. No copy pro-

tection is used on the disk, so you can copy the programs you

want to your other disks for easy access. Built-in heip is

available from any program at any time with the touch of a

key, so you never need to pick up a manual or exit a program

to learn how to use it. Many of the programs on the disk are of

a high enough quality that they could be released on their own,

but you get all 18 on the Potpourri disk for just $17.95

US/$ 19.95 Canadian.

• TransBASIC II - contains all TB modules ever printed.

There are over 140 commands; pick the ones you want to use

in any combination. It's so simple that a summary of instruc-

tions fits right on (he disk label. The manual describes each of

the commands, plus how to write your own commands.

Inner Space Anthology - This is our ever-popular reference

book, ll has no ^'reading" material, but in 122 compact pages

there are memory maps for five CBM computers, three disk

drives and maps of COMAL: summaries of BASIC com-

mands. Assembler and MLM commands and Wordprocessor

and Spreadsheet commands. ML codes and modes are summa-

rized, as well as entry points to ROM routines. There are sec-

tions on Music, Graphics, Network and BBS phone numbers.

Computer Clubs, Hardware, unit-to-unit conversions, plus

much more ... about 2.5 million characters in total!

• The Transactor Bits and Pieces Book and Disk - 246 pages

of Bils from Transactor Volumes 4 through 6 with a very com-

prehensive index. Even if you have all those issues, it makes a

handy reference - no more flipping through magazines for that

one bit that you just know is somewhere. Also, each item if

forward/reverse referenced. Bils that are similar in nature or

are updates to previous bits are cross-referenced. And the in-

dex makes it even easier to find those quick facts that elimi-

nate a lot of wheel re-inventing. The bits book disk contains

all the programs from ^he book and can save a lot of typing.

The G-Link Interface - The G-Link is a C 64 to IEEE inter-

face. It allows the 64 to use IEEE peripherals such as the 4040,

8050, 9090, 9060, 2031 and SFD-1001 disk drives, or any

IEEE printer, modem or e\en some Hewlett-Packard and Tek-

tronics equipment like oscilloscopes and spectrum analyzers.

The beauty of the G-Link is its "transparency" to the C64

operating system. Some IEEE interlaces for the 64 add BASIC

4.0 commands and other things to the system that can interfere

with utilities you might like to install. The G-Link adds noth-

ing: it is so transparent that a switch is used to toggle between

serial and IEEE modes, not a linked-in command. Switching

from one mode to the other is also possible with a small soft-

ware routine as described in the documentation.

Transactor Disks - now with their new, colour directory list-

ing labels. As of Disk #19 a modified version of Jim Butter-

field^s Copy-All is on every disk- It allows file copying from

serial to IEEE drives, or vice versa. '

• The Micro-Sleuth; C64/1541 Test Cartridge - Designed by

Brian Steele (a service technician for several southern Ontario

Schools), this is a very popular cartridge. The Micro-Sleuth

will lest the RAM of a C64 even if the machine is too sick to

run a program! The cartridge takes complete control of the

machine, tests all RAM, ROM and other chips, and in another

mode puts up a menu: •

1) Check drive speed

2} Check drive alignment

3) 1541 serial lest

4) C64 serial test

5) Joystick pon 1 test

6) Joystick pon 2 test

7) Cassette port test

8) User port test

A second board (included) plugs onto the user port:; it contains

8 LEDs that let you locate the faulty chip. Manual included.

Micro-Sleuth with both boards and manual is $99.95

US/$ 1 29,95 CDN,

• Transactor Back Issues and Microfiche - All Transactors

from Volume 4 Issue 1 are available on Microfiche. The strips

are the 98 page size compatible with most fiche readers. Some

issues are available only on microfiche and are marked as such

on the order card. The price is the same as for the magazines

with the exception that a complete set (Volumes 4, 5, 6 and 7)

will cost just $49,95 US/$59,95 CDN.

This list shows the '*themes" of each issue. Theme issues

didn't start until Volume 5 Issue 1. Transactor Disk #1 in-

cludes all the programs from Volume 4 and Disk #2 includes

all programs for Volume 5 Issues I to 3. Thereafter there is a

separate disk for each issue. Disk #8 from the Languages Issue

includes COMAL 0.14, a soft-loaded, slightly scaled down

version of the COMAL 2.0 cartridge. Volume 6, Issue 5 lists

the directories for Transactor Disks #1 lo#9.

Vol.4

Vol.4

Vol.5

Vol,

5

Vol,

5

Vol,

5

Vol.5

Vol,5

Vol.6

Vol.6

Vol.6

VoL6

Vol.6

Vol.6

Vol.7

Vol.7

Vol.7

Vol.?

Vol.7

Vol.7

VoL8

Vol.8

- Vol.8

' Vol.8

Issues

Issues

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

1 to 3 (Disk #1)

4to6(Disk:*4^-MFonly

1 - Sound and Graphics

2 - TransitiofM^L (M^nly)

3 - Piracy and PfWftdion (MF only)

4- Business^pdtductkipCMFonly)

5 - Hardware and Peripherals

6- Aids & Utilities

1 - More Aids & Utilities

2 - Networking & Communications

3 - The Languages

4- Implementing the Sciences

5 - Hardware & Software Interfacing

6 - R:^l Life Applications

1 -(ROM/Kernel Routines^

2 - Games from the Inside Out

3- Programming the Chips

4 - Gizmos and Gadgets

5 - Languages I!

6- Simulations & Modelling

1 - Mathematics

2 - Operating Systems

3 - Feature: Surge Protector

4 ' Feature: Transactor for the Amiga

Disk #2

#2

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

#21

Transactof 7a July 1968: Volume 9, Issue 1

• Vol.8 Issue 5 - Feature: Binary Trees#22

•V0L8 Issue 6- Feature: Cellular Automata#23

Your Name Here - Mainly due to demand from readers (and

we'd also like the money!), Transactor is now accepting a lim-

ited amount of advertising. If you have a product or service

which would be of interest to our readers, you will find the

rates a very pleasant surprise. Your advertising dollar will take

your message directly to the heart of the Commodore world.

Classified ads are also available at $2.00 per word - we'll do

all the typesetting. Either write or phone in your requirements.

We reserve the right to refuse advertising which is misleading,

fattening or promotes piracy.

Industry News

C128 Developer's Package: Commodore's own CI28 Devel-

oper's Package for the C64/C128 is suitable for both large and

small development projects. The package works best with sys-

tems having more than one disk drive and an 80-coliimn text

display, but minimal systems are supported as well. The De-

veloper's Pack includes an editor, an assembler, C128 tools,

RAM expansion routines, 1331 mouse routines. C64 tools,

1571/1581 burst routines and C64 fast loaders.

The editor. ED 128, is a full-screen editor similar in function to

the EOT editor from Digital Equipment Corporation. EDI28
functions in both ASCII and PETASCll HCD65 is a powerful

6502 macro assembler similar fo the assembler used to assem-

ble the C128 operating system. This assembler supports condi-

tionals, local labels, many directives, cross references, etc. The

C64 tools include: a sprite editor, a sound editor, and a charac-

ter editor. The software is provided on two double-sided

diskettes (included).

The manual includes such valuable information as: the differ-

ences between the CI28 and 1571 ROM revisions; source

code for the fast loaders. REU routines, mouse drivers, and

burst routines; and descriptions of the routines in the CI28
BASIC 7,0 floating point math package including the table of

jump vectors. To get a copy of the Developer's Package, order

part number CDEVI2800I from: CATS, Attn: Lauren Brown,

1200 Wilson Drive, West Chester, PA, USA, 19380.

XT

Complete Bookkeeping Package for the C128; "the sys

tem" is a comprehensive, integrated, easy-to-use electronic

bookkeeping package for the C-128. The General Ledger, Ac-

counts Receivable Ledger and Accounts Payable Ledger are

always up to date; posting is not put off to some future time. In

addition, "THE SYSTEM" provides you with a payroll record-

keeping function. You are able lo print Income Statemenis

which cover from one to twelve months of operation, and go

back as far as eighteen months,
I

'r

"THE SYSTEM" is intended for use as a ''point-of-sale" pack-

age, actually replacing your cash register At day's end, a sum-

mary of all sales and their cost is printed for each sales clerk

and the total for the whole sales force. Other features: analyze

performance by sales staff and department; '*cash analysis" to

assist you in balancing the cash at the end of the day; full pur-

chasing, receiving, and costing capabilities; payments by cash

or cheque; complete audit trail; custom-designed statements

and reports; intelligent handling of disk errors,

Dataland Ltd.. P.O. Box 663, Tottenham, Ontario, Canada,

LOG IWO. Phone (416) 936-2677.

Mystic Jim's Stuff: Mystic Jim's software and hardware are

primarily related to GEOS» including products to interface

GEOS with other Commodore programs such as Doodle,

Koala Pad. Print Shop and BASIC 8 in 80 column mode.

Hardware products include a Real-Time Clock and a 64K
Video RAM upgrade kit for the C 1 28.

Shareware disks are sent on request. If you find a disk useful,

you may request any or all of the others, on the shareware ba-

sis: you contribute whatever the disks are worth to you, after

trying them- Shareware membership is available for $50 (US)

and includes: all of the shareware disks, including each new
one as it comes out; a subscription to GEOWORLD; full ac-

cess to Mystic Jim*s 20M BBS, with its growing program li-

brary, games, contests, information, and more; and special dis-

counts on software and hardware. All products carry a money-
back guarantee and none of the software is copy-protected.

The BBS provides customer service.
I

Programmers are invited to submit their programs for inclu-

sion in the shareware library. Mystic Jim makes lump-sum

payments for programs that are not in the public domain. Full

credit is given for those that are in the public domain.

Mystic Jim, 2388 Grape, Denver, CO, USA 80207, Phone

(303) 321-3223 (voice), (303) 321-8954 (BBS), (705) 533-

2126 (Canadian BBS).

Update on Romjet Custom Cartridge: In our last issue, we
carried an item on the RomJet Custom Cartridges which stated

that they were available in sizes ranging from 32K to 256K. In

fact; the upper bound of this range is a voluminous 512K.

RomJet will install on its cartridges any non-copy-protected

programs which you legally own and which permit the cre-

ation of back-up copies. For more information, contact: Rom-
Jet, 210-2450 Sheppard Ave. E., Willowdale, ON, Canada,

M2J 4Z9. Phone (4 1 6) 274-7378 or 626-5959.

1988 Commodore Computerfesl: The third annual

Chicagoland Commodore Compulerfest will be held August

28 at the Exposition Center at the Kane County Fairgrounds,

St Charles, IL, The show, presented by the Fox Valley 64 User

Group, will feature national speakers, vendors, and products

for the 64, 128, and the Amiga. It is the largest Commodore
computer club show in the midwest. Admission fee is $5.00

for the day and includes access to all the speaker and technical

sessions. For more information, write to: Compulerfest, P.O.

Box 28. North Aurora, IL, 60542,

Transactor 79 July 1986: Volume 9, Issue 1

Superboot for C128: Superboo! is software that lets you cre-

ate your own auto-booi disks that will run your program i[i ei-

ther CI 28 or C64 mode when the system is booted Available

from: JT Program Software. 100 North Berelania St.. Suite

2ia Honolulu, HI. USA, 96817.

Computer Save is an independent monthly publication de-

signed to provide assistance to buyers and sellers of quality or-

phan equipment. They also advertise for both manufacturers

and retailers of the newest hardware. Their aim is to inform

and entertain by way of constantly updated press releases and

feature articles by writers well versed in their particular fields,

whether the very newest or the orphans. Computer Save is

even now planning to expand their aid by way of new and ex-

citing additions to their format. Watch for future issues. Con-

tact: Elizabeth Harfwell, 278-3017 St. Clair Ave-, Burlington,

ON, Canada, L7N 3P5. Phone (416) 529-0580.

Salellite Tracking proftram for the C64/C128: SATCOMM-

64 allows Amateur radio operators or others using communi-

cations satellites to track up to 15 different satellites, and pro-

vides key data at user-selected intervals of one minute or

more. The user can select screen-only searches, or generate

printed reports so that the computer is available for communi-

cations use during actual satellite passes. The printed reports

include: relative azimuth and elevation, actual altitude, longi-

tude and latitude, local time, UTC day, geographic areas that

are within the satellite's communication range, tloppler shift,

minimum and maximum communication distance, operating

frequencies, orbit number, and phase.

SATCOMM-64 overcomes traditional satellite tracking pro-

gram shortcomings with features like annual rollover,

standard-to-daylight time change-over, and single setup multi-

day/multi-satellite reports. The program comes with data for

several amateur radio, visible, and weather/research satellites;

whenever desired, the user can replace these with new satellite

choices.

SATCOMM-64 is compatible with the C64/128, 1541 disk

drive and 1525 printer, and is available for $15.95 (MO resi-

dents add tax) plus $3.00 p&h from: Stralegic Marketing Re-

sources, Inc., RO- Box 2183, Ellisville. MO 630IL Phone

(314)256-7814.

Micro Detective professional debugger for Ihe C64 and

C128: Micro Detective is a resident debugging faciUty that

provides interactive trace modes, advanced program error de-

tection and reporting, and programmers' utility commands.

The trace can be turned on or off at will while a BASIC pro-

gram executes, and operates on a separate screen so that the

display of the program being traced is not interfered with. The

CI 28 version displays trace information in a separate window

anywhere on the 40 or 80 column screen. Conditional tracing

allows you to trace only certain program lines, variables, state-

ments, or when certain conditions are met.

Micro-Detective's error detection gives specific, clear error

messages instead of the standard '?syniax error* or other sys-

tem message. More meaningful messages, like ^'Expected a

comma", or "Variable must start with a letter*' help the pro-

grammer spot the problems much more quickly- Micro detec-

tive displays the section of code that caused the error, and han-

dles all kinds of problems, including numeric overflow and

disk errors.

Micro Detective also provides a complete set of programmers*

aids: bidirectional program scrolling through program listings;

AUTO, DELETE, DIR, DISK, RENUM, etc.; variable cross

reference list; disk commands; program merging; move ranges

of program lines: SLIST, which lists a program with spaces in

intelligent places to make it more readable; plus many other

commands and features (a total of over 30 new commands are

added).

Micro Detective for the C64, with everything mentioned

above, is $49.95 (US). In the CI 28 version, the debugger

comes without the error detection feature, for the same price;

the CI28 error detection program is available separately.

From: American Made Software, P.O. Box 323, Loomis, CA
95650.

The Anatomy of the 4040 Disk Drive, written and published

by Hilaire Gagne, is filled with memory maps, ROM routine

explanations, disassembled source code, technical details and

other hard facts about the 4040, Cost is $39.95 (CDN) for

Canadian residents, plus $3 shipping and handling; In the

U.S., $31.95 (US) plus $9 shipping and handling. Order from;

Hilaire Gagne, 4501 Carl St., P.O, Box 278, Hanmer, Onl.,

POM lYO.

Free Spirit releases C64 version of Super 81 Utilities: Free

Spirit Software has released a version of Super 81 utilities for

the C64. Now you can copy whole disks or files from 1541 or

1571 disk drives to the 158 L It also backs up disks or files

with one or two 1541s, one or two 1581s, or any combination.

Also included is a full-featured sector editor, partitioning utili-

ties, scratch/unscratch, lock/unlock, and other file utilities.

Super 81 Utilities is supplied on both 5 1/4" and 3 1/2"

diskettes and will boot from device S or 9. The package costs

$39,95 (US) - shipping/handling are free. For more informa-

tion, contact: Joe Hubbard, Free Spirit Software, Inc., 905 W.

Hillgrove, Suite 8, La Grange, IL 60525. Phone 1-800-552-

6777.

I \

CP/M Starter Set from Public Domain Solutions: The

newest product from Public Domain Solutions for the C128 is

the PDS CP/M Starter Set. This set consists of four disks full

of CP/M utilities, plus printed documentation which explains:

The history of CP/M; Booting up; Transient commands; Resi-

dent commands; Creating and dissolving library (LBR) files;

How to run software on ihe CP/M operating system. The set is

$29.95 (US). Order toll-free 1-800-634-5546 or write to: Pub-

lic Domain Solutions, CP/M DepL, PO. Box 832, Tallevast,

FL 34270.

Transactor 60 July 1986: Volume 9, Issue 1

Transactor
85-10 West Wilmot street

Richmond Hill, Ontario,

Canada

place

stamp

heiB
J

11

Tranzblooperz

The Projector Part 11" had an error in program Listing J . on page 21 . Line 2220 read:

2220 an = th*<clr>/l80

it should have read:

2220 an = th*^/l80

i^ti ''

K" repref^ents the "pi" symbol, entered with the shift/up-arrow key sequence. In up-

per/lowercase mode, the symbol will appear as a small checkerboard-hke character

Our thanks to Don Lokken of Minneapolis, MN for spotting and reporting this error

To order Transactor products or magazine/disk subscriptions in the

U.S., use our new

TOLL-FREE ORDER LINE

1-800-248-2719 Extension 911

(For placing orders only)

Reader Service Card
Fill out this card (please print) or attach your peel-off mailing label, and circle

the ads below that you'd like more information about.

Name

Company

Address

Postal/Zip Code

Advertiser Page

Brown Boxes Inc.

Dave Taylor Enterprises

Free Spirit Software Inc.

Schnedler Systems

29

t

29

NorthWest Music Centre Inc IFC

1

Transactor Classifieds

...are a great way o reach thousands of Commodore microcomputer enthusiasts inexpensively - just

$2 per word! Send your ad copy with cheque or money order to: Transactor Classifieds, 85-10 West

Wilmot Street, Richmond Hill, Ontario, Canada L4B 1K7.

FOR SALE: SFD 1001 $129; 8250 $185; 8050 $145; MSD $310;

8023 $99; 6400 $199; PET 64 $99 Plus shipping.

BETHUREM ENTERPRISES (303) 693-4038 (Prices in US$).

Transactor Bimonthly Special Offer

Our "5-for-3" disk deal was such a success the last time that we're offering it

again. Order any five regular Transactor magazine issue disks from the card at

right (priced at $8.95 US/$9.95 Cdn) and pay for just three of them - that's five

disks full of Utilities and Transactor programs, for just $26.85 US or $29.85

Cdn! Note that this offer does not apply to special disks like "Bits Book" or

TransBasic disks.

The Magazine foi^^bmmodbre Programmers

t^ ^^^^^^^^^iggg^i^^^ii^t^s^iJi^smmmmmmmmmmMmimmm

, ,, Please print your name and address below (or transfer your mailjna label)

;;:(hf
'"^

^
^'''^'"^^^'^ '

" Check^here for change of address U x^Mm^km
wm.

gjasj:
itti

Sub#4380 EXP- Vol- 9 Iss. 5
Bovd Ray
18b05 Gb Avenue
Edmonton, AB
Canada T5T 2M3

Phone:

_ Province/State:

_ CompuServe ID:

IMPORTANT NOTE: Prepayment is required on ALL orders

Subscribers only: please enter subscription number from mailing label

^ii^iitmmmmtmmmmmmMmtmmm

Subscription Order Section

1 year

2 years

3 years

Canada (SCdn.) U.S.A. {$US) Foreign ($US) Air Mail (SUS, overseas onfy)

Mag Disk' Both* Mag Dtak Both Mag Disk Both Mag Disk Both

D 19.00 D 55,00 D 74.00

D 35.00 D 101 .00 D 136.00

D47.50 D137.50 018500

D 15.00 n 45.00 n 60.00

D27,50 92,50 DHO-OO
037.50 ni1250 DlSO.OO

021.00 55.00 D 76.00

C3a-50 101.50 139.50

52.50 L 137.50 L 190.00 !

L --,---
,

-^»J

D 40.00 D 69.00 109.00

O 73.00 126.50 199.50

D 100.00 D 172.50 D 272.50

' Ontario residents please add 8% of disk subscription price for provincial sales tax. No PST on magazine subscriptions-

n Please send Microfiche instead of magazines O Send me info on Transactor for the Amiga
i«PI«IPVPiPPPPPPi

1

Combo Subscription Bonus!
If you are subscribing to BOTH the magazine and the disk, check one of the following FREE gifts:

Q TransBASIC2DlskandManuai Q Potpourri Disk Q Extended Subscription (extra issue)

jS^Tj^^i^fiiiWf\'i X X S X X !^ A !^H >> X—.1 . >-.!^C^\X^J\^ lOll^^L^

Product Order Section
Ontario residents please add 8% PST on all items

G'LINKC64 10 IEEE Interface

Poftjourri Disk

Tfie Micro Sieuth

16KQBB'!PleaseacJci$3US,

32K Q8B ^ $4 Cdn, postage and handing

64K QBB tor any Quick Bfown Box)

The Transactor Disk, $8.95 US, $9.95 Cdn each (1541/4040/2031/MSD format)
Numbers shown are Disk numbers; the Volume and Issue of the corresponding magazine are shown in brackets ^

D 1(V4,#1-6) n4(V5,#5) n7{V6.#2) D 10(V6,#5) Q 13(V7,#2} O 16(V7,#5) D 19(V8,#2) n22[V8,#5)

n2(V5,#1-3) D5(V5,#6) n6iV6.#3) Q 11(V6,#6) Q 14{V7,#3) D 17(V7,#6) n20(V8,#3) D23{V8,#6)

D 3 (V5, #4) D 6 (V6. #1) a 9 (V6. #4),^USMM D m^JM 18 (V8. ii}
. D ?t(V% S4i

^ Q ?4 (y9,.ftl)

Add flat $2.00 shipping & handling tor any number of items ordered from above box.

$Cdn. $u.s. $Cdn. SU.S.

3 17.95 u^ Tr^sador Book of Bits and Pieces #1 1 69,95 59,95

D 9.95 8.59 Bils and Pieces Book Disk D 19,95 17.95

n 24.95 19,95 Bits and Pieces Book AND Disk Comtw J 129.95 99,95

D 19.95 17.95 The TransBAS C 2 Disk .;U..;: ^ n 89.00 69.00

D 19.95 17.95 Juggler 128 CP'M Fofmalting Utility D 129.00 99,00

D 59.95 49.95 Transador Microfiche Set Vols 4 Sirough 8) r 169.00 129.00

^^ .^i,^^V»r.^,X.

Transactor Back Issues and Microfiche: $4.50 U.S., $4.50 Cdn. (MF = Microficlne)

nV4.#1 DmF nV4,#6 MFonly DVS. #5 D»i^. T O^S- *'' CImF Dv?, #3 O^f CIVS, #2 DmF
nV4,#2 DMF
nV4, #3 MFoniy

V4, #4 MFonly

QV4.#5 MFonly

nv5,#i QMF
GV5. #2 MFonly

nV5. #3 MFonly

QVB, #4 MFonly

DV5,#6 QmP 0V6.#5 DMF
nv6, #1 Qmf Dve, #6 Qmf
nv6,#2 Qmf nv7.#i Qmf
V6, #3 Dmf Dv7,#2 Qmf

Qv7,#4 Qmf
QV7.#5 Gmf
DV7,#6 Dmf^
nv8,#i Qmf

nv8,#3 Dmf,,
QV8.#4 Gmf"
Dv8.#5 Dmf,
V8,#6 Qmf

Ontario resTcfents please adcl 8% provincial sales tax fbir any Items onJered from this bene.

"W" !

BUSINESS REPLY MAIL
f ;RSTClAS^PFRW;TNO 390 BUFf-ALO, NY

POSTAGE WILL BE PA<D 8V AOOr^EiSEE

iicinsaciOi
PO, Box 338 Station 'C
Buffalo, NY, 14209-9990

NO POSTAGE
NECESSARY
IF MAJLEQ

IN The
UNITED STATES

ln.l1.lnl..I.m...i.lMMMh!..I.lMlI.M!MJI

Busifiess Reply Mail

Postage wsM be paid by:

501 Alden Road
RO, Box 3250
Morkham Industrial Park

Markham. Or^tario

L3R 9Z9

>

The Potpourri Disk

1

Help! War Balloons Bag the Elves
_, , u ,F

ThisHELPfu utility gives you instant

menu-driven access to text files

at the touch of a key - while any
program is running!

Shoot down those evi Nazi War
Balloons with your handy Acme
Cannon] Don't et them get away!

A cute itte arcade-style game:
capture the eves in the bag as
quickly as you can - but don't get

the good elfl

Von Googol
Loan Helper

]

1

Blackjack
At lastl The mad philosopher,

Helga von Googo , brings her own
brand of wisdom to the small

screen] f this is 'Al'- then it just ain't

natural!

How much is that loan really going

to cost you? Which interest rate

con you offofd? With Loan Helper,

the answers ore as close as your
1 friendly 641
1 1

1

The most f exib e blackjack simula-

tion you'll find anywhere. Set up
your favourite rule variations for

doubling, surrendering and spit-

tir^ the deck.

News
Keyboard File Compore

Save the money you spend on
those supermartet tabloids - this

program will generate equo ly

convincing headiine copy - for

free!

1
'

Learning how to play the piano?

"his handy educational program
makes it easy and fun to earn the

notes on the keyboard.

Which of those two files you just

created is the most recent ver-

sion? With this great utiHty you'll

never be left wondering.

Flledump Wrd Ghoul Dogs
1

Examine your disk files FAST with

this machine language utility.

Hand es six formats, inc uding hex,

decimal CBM and true ASCI,

WordPro and SpeedScript.

The uitimate in easy-to-use data
base programs, WRD ets you
quickly and simply create, exam-
ine arxJ edit just about any data.

Comes with sample file.

Arcade maniacs look outi You'll

need ail your dexterity to hande
1 this wicked joystick-buster! These

, mad dog-monsters from space
are r\ot for rovlcesi

Anagrams 1 Quiz Octagons

Anagrams lets you unscramble
words for crossword puzzles and
the lil<e. The program uses a recur-

sive ML subroutine for maximum
speed and efficiency.

Trivia fanatics and students alike

will hove fun with this program,
which gives you multiple choice

tests on material you have en-

tered with the WRD program.

Just the thing for you Mensa types.

Octagons is a cholenging puzzle

of the mind, Four levels of pJoy.

and a tough 'memory' voriation

for rea(experts!

Life AHA! Lander Backstreets

A FAST machir© language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch
them grow!

AHAf's great iunar ander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

A nifty arcade gome, 100% ma-
chine languagen that heps you
learn the typewriter keyboard
while you play! Unlike any typing

program you've seen!

A 1 the above progrc

above programs, AL

independent y or fror

The ENT

\rr\s,

.L of

na r

IRE

just $17.95 Ua $19.95 Canad
the above progranns, on

nenu. with built-in menu-drh

i POTPOURRI CC
JUST $17.95 US!!

See Order Card at Center

ion.

a s

/en^

>LL

Na not EACH of the

nge disk, accessed
ie p and fast-loader.

ECTION

Type in a lot of Transactor programs?

Does the above time and appearance of the sk> look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 US, $9.95 Cdn. Per Issue

6 Disk Subscription (one year)

* Just $45.00 US, $55.00 Cdn.

(see order form at center fold)

Now Amiga Owners Can Save Time Too!
^ Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

All the Amiga programs from the magazine, with complete

documentation on disk, plus our pick of the public domain!

